Hypersurfaces of Einstein manifolds

Norihito Koiso

Annales scientifiques de l'École Normale Supérieure (1981)

  • Volume: 14, Issue: 4, page 433-443
  • ISSN: 0012-9593

How to cite

top

Koiso, Norihito. "Hypersurfaces of Einstein manifolds." Annales scientifiques de l'École Normale Supérieure 14.4 (1981): 433-443. <http://eudml.org/doc/82082>.

@article{Koiso1981,
author = {Koiso, Norihito},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {analytic hypersurfaces; Einstein manifolds; totally geodesic; stable minimal hypersurfaces},
language = {eng},
number = {4},
pages = {433-443},
publisher = {Elsevier},
title = {Hypersurfaces of Einstein manifolds},
url = {http://eudml.org/doc/82082},
volume = {14},
year = {1981},
}

TY - JOUR
AU - Koiso, Norihito
TI - Hypersurfaces of Einstein manifolds
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1981
PB - Elsevier
VL - 14
IS - 4
SP - 433
EP - 443
LA - eng
KW - analytic hypersurfaces; Einstein manifolds; totally geodesic; stable minimal hypersurfaces
UR - http://eudml.org/doc/82082
ER -

References

top
  1. [1] M. BERGER, Quelques formules de variation pour une structure riemannienne (Ann. scient. Éc. Norm. Sup., Vol. 3, 1970, pp. 285-294). Zbl0204.54802MR43 #3969
  2. [2] J. P. BOURGUIGNON, Sur les géodésiques fermées des variétés quaternionniennes de dimension 4 (Math. Ann., Vol. 221, 1976, pp. 153-165). Zbl0309.53044MR53 #9288
  3. [3] J. CHEEGER and D. GROMOLL, The Splitting Theorem for Manifolds of Non-Negative Ricci Curvature (J. Diff. Geom., Vol. 6, 1971, pp. 119-128). Zbl0223.53033MR46 #2597
  4. [4] B.-Y. CHEN, Extrinsic Spheres in Riemannian Manifolds (Houston J. of Math., Vol. 5, 1979, pp. 319-324). Zbl0431.53024MR81h:53053
  5. [5] B.-Y. CHEN and T. NAGANO, Totally Geodesic Submanifolds of Symmetric spaces II (Duke Math. J., Vol. 45, 1978, pp. 405-425). Zbl0384.53024MR58 #7494
  6. [6] D. M. DETURCK and J. L. KAZDAN, Some Regularity Theorems in Riemannian Geometry (Ann. scient. Éc. Norm. Sup., Vol. 14, 1981, pp. 249-260). Zbl0486.53014MR83f:53018
  7. [7] H. FEDERER, Geometric Measure Theory, Springer-Verlag, 1969, Berlin. Zbl0176.00801MR41 #1976
  8. [8] M. W. HIRSCH, Differential Topology, Springer-Verlag, New York, 1976. Zbl0356.57001MR56 #6669
  9. [9] H. B. LAWSON, Jr., Minimal Varieties in Real and Complex Geometry, Les Presses de l'Université de Montréal, 1974, Montréal, Canada. Zbl0328.53001
  10. [10] H. NAITOH, Isotropic Submanifolds with Parallel Second Fundamental forms in Symmetric Spaces (Osaka J. Math., Vol. 17, 1980, pp. 95-110). Zbl0427.53022MR80m:53043
  11. [11] J. SIMONS, Minimal Varieties in Riemannian Manifolds (Ann. of Math., Vol. 88, 1968, pp. 62-105). Zbl0181.49702MR38 #1617

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.