Simple quotients of group C * -algebras for two step nilpotent groups and connected Lie groups

Detlev Poguntke

Annales scientifiques de l'École Normale Supérieure (1983)

  • Volume: 16, Issue: 1, page 151-172
  • ISSN: 0012-9593

How to cite

top

Poguntke, Detlev. "Simple quotients of group $C^*$-algebras for two step nilpotent groups and connected Lie groups." Annales scientifiques de l'École Normale Supérieure 16.1 (1983): 151-172. <http://eudml.org/doc/82110>.

@article{Poguntke1983,
author = {Poguntke, Detlev},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {group C*-algebra; equivalence classes of unitary strongly continuous irreducible factor representations; primitive ideal; prime ideal; two step nilpotent groups; twisted convolution algebras; imprimitivity algebras; locally algebraic groups; traces; K-theory of C*-algebras},
language = {eng},
number = {1},
pages = {151-172},
publisher = {Elsevier},
title = {Simple quotients of group $C^*$-algebras for two step nilpotent groups and connected Lie groups},
url = {http://eudml.org/doc/82110},
volume = {16},
year = {1983},
}

TY - JOUR
AU - Poguntke, Detlev
TI - Simple quotients of group $C^*$-algebras for two step nilpotent groups and connected Lie groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1983
PB - Elsevier
VL - 16
IS - 1
SP - 151
EP - 172
LA - eng
KW - group C*-algebra; equivalence classes of unitary strongly continuous irreducible factor representations; primitive ideal; prime ideal; two step nilpotent groups; twisted convolution algebras; imprimitivity algebras; locally algebraic groups; traces; K-theory of C*-algebras
UR - http://eudml.org/doc/82110
ER -

References

top
  1. [1] L. G. BROWN, P. GREEN et M. A. RIEFFEL, Stable Isomorphism and Strong Morita Equivalence of C*-Algebras (Pacific J. Math., Vol. 71, 1977, pp. 349-363). Zbl0362.46043MR57 #3866
  2. [2] J. DIXMIER, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1969. Zbl0174.18601MR39 #7442
  3. [3] J. DIXMIER, Ideal Center of a C*-Algebra (Duke Math. J., Vol. 35, 1968, pp. 375-382). Zbl0179.18004MR37 #5703
  4. [4] J. DIXMIER, Sur la représentation régulière d'un groupe localement compact connexe (Ann. Scient. Éc. Norm. Sup., Vol. 2, 1969, pp. 423-436). Zbl0186.46304MR41 #5553
  5. [5] G. A. ELLIOTT, On the K-theory of the C*-algebra Generated by a Projective Representation of a Torsion-Free Discrete Abelian Group, preprint, Copenhagen, 1981. 
  6. [6] E. C. GOOTMAN et J. ROSENBERG, The Structure of Crossed Product C*-Algebras : A Proof of the Generalized Effros-Hahn Conjecture (Invent. math., Vol. 52, 1979, pp. 283-298). Zbl0396.22009MR80h:46091
  7. [7] P. GREEN, The Local Structure of Twisted Covariance Algebras (Acta Math., Vol. 140, 1978, pp. 191-250). Zbl0407.46053MR58 #12376
  8. [8] P. GREEN, The Structure of Imprimitivity Algebras (J. Funct. Anal., Vol. 36, 1980, pp. 88-104). Zbl0422.46048MR83d:46080
  9. [9] G. HOCHSCHILD, The Structure of Lie Groups, Holden-Day, San Francisco, 1965. Zbl0131.02702MR34 #7696
  10. [10] R. HOWE, The Fourier Transform for Nilpotent Locally Compact Groups, (Pacific J. Math., Vol. 73, 1977, pp. 307-327). Zbl0396.43013MR58 #11215
  11. [11] E. KANIUTH, On Primary Ideals in Group Algebras, to appear in Monatsh. Math. Zbl0481.43003
  12. [12] A. KLEPPNER, Multipliers on Abelian Groups (Math. Ann., Vol. 158, 1965, pp. 11-34). Zbl0135.06604MR30 #4856
  13. [13] M. LEINERT, Beitrag zur Theorie der verallgemeinerten L1-Algebren (Arch. Math., Vol. 21, 1970, pp. 594-600). Zbl0221.43009MR45 #5776
  14. [14] G. W. MACKEY, Unitary Representations of Group Extensions (Acta Math., Vol. 99, 1958, pp. 265-311). Zbl0082.11301MR20 #4789
  15. [15] C. C. MOORE et J. ROSENBERG, Groups with T1 Primitive Ideal Spaces (J. Funct. anal., Vol. 22, 1976, pp. 204-224). Zbl0328.22014MR54 #7693
  16. [16] L. PUKANSZKY, Unitary Representations of Solvable Lie Groups (Ann. Scient. Éc. Norm. Sup., Vol. 4, 1971, pp. 457-608). Zbl0238.22010MR55 #12866
  17. [17] L. PUKANSZKY, Action of Algebraic Groups of Automorphisms on the Dual of a Class of Type I Groups (Ann. Scient. Éc. Norm. Sup., Vol. 5, 1972, pp. 379-396). Zbl0263.22011MR48 #466
  18. [18] L. PUKANSZKY, Characters of Connected Lie Groups (Acta Math., Vol. 133, 1974, pp. 81-137). Zbl0323.22011MR53 #13480
  19. [19] L. PUKANSZKY, Unitary Representations of Lie Groups with Cocompact Radical and Applications (Trans. Amer. Math. Soc., Vol. 236, 1978, pp. 1-49). Zbl0389.22009MR58 #6070
  20. [20] M. A. RIEFFEL, C*-Algebras Associated with Irrational Rotations (Pacific J. Math., Vol. 93, 1981, pp. 415-429). Zbl0499.46039MR83b:46087
  21. [21] I. SCHUR, Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen (J. Reine Angew. Math., Vol. 132, 1906, pp. 85-137). Zbl38.0174.02JFM38.0174.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.