Ergodicity of toral linked twist mappings
Annales scientifiques de l'École Normale Supérieure (1983)
- Volume: 16, Issue: 3, page 345-354
- ISSN: 0012-9593
Access Full Article
topHow to cite
topPrzytycki, Feliks. "Ergodicity of toral linked twist mappings." Annales scientifiques de l'École Normale Supérieure 16.3 (1983): 345-354. <http://eudml.org/doc/82120>.
@article{Przytycki1983,
author = {Przytycki, Feliks},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {pseudo-Anosov maps; Stormer problem; Bernoulli property},
language = {eng},
number = {3},
pages = {345-354},
publisher = {Elsevier},
title = {Ergodicity of toral linked twist mappings},
url = {http://eudml.org/doc/82120},
volume = {16},
year = {1983},
}
TY - JOUR
AU - Przytycki, Feliks
TI - Ergodicity of toral linked twist mappings
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1983
PB - Elsevier
VL - 16
IS - 3
SP - 345
EP - 354
LA - eng
KW - pseudo-Anosov maps; Stormer problem; Bernoulli property
UR - http://eudml.org/doc/82120
ER -
References
top- [1] R. BOWEN, On Axiom A Diffeomorphisms (Proc. C.B.M.S. Regional Conf. Ser. Math., N° 35, Amer. Math. Soc., Providence R. I.). Zbl0383.58010MR58 #2888
- [2] R. BURTON and R. EASTON, Ergodicity of Linked Twist Mappings (Global Theory of Dynamical Systems, Proc., Northwestern 1979, Lecture Notes in Math., n° 819, pp. 35-49). Zbl0451.58023MR82b:58046
- [3] R. DEVANEY, Linked Twist Mappings are Almost Anosov (Global theory of Dynamical Systems, Proc. Northwestern 1979, Lecture Notes in Math., n° 819, pp. 121-145). Zbl0448.58018MR82f:58070
- [4] R. EASTON, Chain Transitivity and the Domain of Influence of an Invariant Set (Lecture Notes in Math., n° 668, pp. 95-102). Zbl0393.54027MR80j:58051
- [5] A. KATOK, Ya. G. SINAI and A. M. STEPIN, Theory of Dynamical Systems and General Transformation Groups with Invariant Measure (I togi Nauki i Tekhniki, Matematicheskii Analiz, Vol. 13, 1975, pp. 129-262 (In Russian). English translation : J. of Soviet Math., Vol. 7, N° 6, 1977, pp. 974-1065). Zbl0399.28011
- [6] A. KATOK and J.-M. STRELCYN, Invariant Manifolds for Smooth Maps with Singularities I. Existence, II. Absolute Continuity, preprint, The Pesin Entropy Formula for Smoth Maps with Singularities, preprint.
- [7] M. WOJTKOWSKI, Linked Twist Mappings Have the K-Property (Nonlinear Dynamics, International Conference, New York 1979, pp. 66-76). Zbl0475.58008
- [8] M. WOJTKOWSKI, A Model Problem with the Coexistence of Stochastic and Integrable Behaviour (Comm. Math. Phys., Vol. 80, N° 4, 1981, pp. 453-464). Zbl0473.28006MR83a:28023
- [9] YA. B. PESIN, Lyapunov Characteristic Exponents and Smooth Ergodic Theory (Uspehi Mat. Nauk., Vol. 32, n° 4 (196), 1977, pp. 55-112. English translation : Russian Math. Surveys, Vol. 32, No. 4, 1977, pp. 55-114). Zbl0383.58011
- [10] W. THURSTON, On the Geometry and Dynamics of Diffeomorphisms of Surfaces, I, preprint.
- [11] F. PRZYTYCKI, Linked Twist Mappings : Ergodicity, preprint I.H.E.S., February 1981.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.