Ergodicity of toral linked twist mappings

Feliks Przytycki

Annales scientifiques de l'École Normale Supérieure (1983)

  • Volume: 16, Issue: 3, page 345-354
  • ISSN: 0012-9593

How to cite

top

Przytycki, Feliks. "Ergodicity of toral linked twist mappings." Annales scientifiques de l'École Normale Supérieure 16.3 (1983): 345-354. <http://eudml.org/doc/82120>.

@article{Przytycki1983,
author = {Przytycki, Feliks},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {pseudo-Anosov maps; Stormer problem; Bernoulli property},
language = {eng},
number = {3},
pages = {345-354},
publisher = {Elsevier},
title = {Ergodicity of toral linked twist mappings},
url = {http://eudml.org/doc/82120},
volume = {16},
year = {1983},
}

TY - JOUR
AU - Przytycki, Feliks
TI - Ergodicity of toral linked twist mappings
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1983
PB - Elsevier
VL - 16
IS - 3
SP - 345
EP - 354
LA - eng
KW - pseudo-Anosov maps; Stormer problem; Bernoulli property
UR - http://eudml.org/doc/82120
ER -

References

top
  1. [1] R. BOWEN, On Axiom A Diffeomorphisms (Proc. C.B.M.S. Regional Conf. Ser. Math., N° 35, Amer. Math. Soc., Providence R. I.). Zbl0383.58010MR58 #2888
  2. [2] R. BURTON and R. EASTON, Ergodicity of Linked Twist Mappings (Global Theory of Dynamical Systems, Proc., Northwestern 1979, Lecture Notes in Math., n° 819, pp. 35-49). Zbl0451.58023MR82b:58046
  3. [3] R. DEVANEY, Linked Twist Mappings are Almost Anosov (Global theory of Dynamical Systems, Proc. Northwestern 1979, Lecture Notes in Math., n° 819, pp. 121-145). Zbl0448.58018MR82f:58070
  4. [4] R. EASTON, Chain Transitivity and the Domain of Influence of an Invariant Set (Lecture Notes in Math., n° 668, pp. 95-102). Zbl0393.54027MR80j:58051
  5. [5] A. KATOK, Ya. G. SINAI and A. M. STEPIN, Theory of Dynamical Systems and General Transformation Groups with Invariant Measure (I togi Nauki i Tekhniki, Matematicheskii Analiz, Vol. 13, 1975, pp. 129-262 (In Russian). English translation : J. of Soviet Math., Vol. 7, N° 6, 1977, pp. 974-1065). Zbl0399.28011
  6. [6] A. KATOK and J.-M. STRELCYN, Invariant Manifolds for Smooth Maps with Singularities I. Existence, II. Absolute Continuity, preprint, The Pesin Entropy Formula for Smoth Maps with Singularities, preprint. 
  7. [7] M. WOJTKOWSKI, Linked Twist Mappings Have the K-Property (Nonlinear Dynamics, International Conference, New York 1979, pp. 66-76). Zbl0475.58008
  8. [8] M. WOJTKOWSKI, A Model Problem with the Coexistence of Stochastic and Integrable Behaviour (Comm. Math. Phys., Vol. 80, N° 4, 1981, pp. 453-464). Zbl0473.28006MR83a:28023
  9. [9] YA. B. PESIN, Lyapunov Characteristic Exponents and Smooth Ergodic Theory (Uspehi Mat. Nauk., Vol. 32, n° 4 (196), 1977, pp. 55-112. English translation : Russian Math. Surveys, Vol. 32, No. 4, 1977, pp. 55-114). Zbl0383.58011
  10. [10] W. THURSTON, On the Geometry and Dynamics of Diffeomorphisms of Surfaces, I, preprint. 
  11. [11] F. PRZYTYCKI, Linked Twist Mappings : Ergodicity, preprint I.H.E.S., February 1981. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.