Filtrations of cohomology modules for Chevalley groups

Henning Haahr Andersen

Annales scientifiques de l'École Normale Supérieure (1983)

  • Volume: 16, Issue: 4, page 495-528
  • ISSN: 0012-9593

How to cite

top

Andersen, Henning Haahr. "Filtrations of cohomology modules for Chevalley groups." Annales scientifiques de l'École Normale Supérieure 16.4 (1983): 495-528. <http://eudml.org/doc/82127>.

@article{Andersen1983,
author = {Andersen, Henning Haahr},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Chevalley group; Borel subgroup; line bundle; filtrations; formal characters; sum formula; Translation functors; characters of irreducible G(k)-modules; Weyl modules},
language = {eng},
number = {4},
pages = {495-528},
publisher = {Elsevier},
title = {Filtrations of cohomology modules for Chevalley groups},
url = {http://eudml.org/doc/82127},
volume = {16},
year = {1983},
}

TY - JOUR
AU - Andersen, Henning Haahr
TI - Filtrations of cohomology modules for Chevalley groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1983
PB - Elsevier
VL - 16
IS - 4
SP - 495
EP - 528
LA - eng
KW - Chevalley group; Borel subgroup; line bundle; filtrations; formal characters; sum formula; Translation functors; characters of irreducible G(k)-modules; Weyl modules
UR - http://eudml.org/doc/82127
ER -

References

top
  1. [1] H. H. ANDERSEN, The Strong Linkage Principle (J. Reine Angew. Math., Vol. 315, 1980, pp. 53-59). Zbl0439.20026MR81b:14006
  2. [2] H. H. ANDERSEN, On the Structure of Weyl Modules (Math. Z., Vol. 170, 1980, pp. 1-14). Zbl0403.20026MR82e:20051
  3. [3] H. H. ANDERSEN, The Frobenius Morphism on the Cohomology of Homogeneous Vector Bundles on G/B (Ann. of Math., Vol. 112, 1980, pp. 113-121). Zbl0421.20016MR81i:14009
  4. [4] H. H. ANDERSEN, On the structure of the Cohomology of Line Bundles on G/B (J. Alg., Vol. 71, 1981, pp. 245-258). Zbl0497.22020MR83a:14016
  5. [5] H. H. ANDERSEN, An Inversion Formula for the Kazhdan-Lusztig Polynomials for Affine Weyl Groups [Adv. in Math. (to appear)]. Zbl0598.20044
  6. [6] R. BOTT, Homogeneous Vector Bundles (Ann. of Math., Vol. 66, 1957, pp. 203-248). Zbl0094.35701MR19,681d
  7. [7] E. CLINE, B. PARSHALL and L. SCOTT, Cohomology Hyperalgebras and Representations (J. Alg., Vol. 63, 1980, pp. 98-123). Zbl0434.20024MR81k:20060
  8. [8] E. CLINE, B. PARSHALL, L. SCOTT and W. VAN DER KALLEN, Rational and Generic Cohomology (Invent. Math., Vol. 39, 1977, pp. 143-163). Zbl0336.20036MR55 #12737
  9. [9] M. DEMAZURE, A Very Simple Proof of Bott's Theorem (Invent. Math., Vol. 33, 1976, pp. 271-272). Zbl0383.14017MR54 #2670
  10. [10] O. GABBER and A. JOSEPH, Towards the Kazhdan-Lusztig Conjecture (Ann. Sc. École Norm. Sup., Vol. 14, 1981, pp. 261-302). Zbl0476.17005MR83e:17009
  11. [11] H. HASSE, Number Theory, Grundlehren der Math. W., 1980, Springer Verlag. Zbl0423.12002MR81c:12001b
  12. [12] J. E. HUMPHREYS, Cohomology of G/B in Characteristic p [Adv. in Math. (to appear)]. Zbl0612.20023
  13. [13] J. C. JANTZEN, Darstellungen Halbeinfacher Gruppen und Kontravariante Formen (J. Reine Angew. Math., Vol. 290, 1977, pp. 117-141). Zbl0342.20022MR55 #5758
  14. [14] J. C. JANTZEN, Weyl Modules for Groups of Lie Type, in Finite Simple Groups II, pp. 291-300, London, Academic Press, 1980. Zbl0472.20016
  15. [15] J. C. JANTZEN, Moduln mit Einem Höchsten Gewicht, SLN 750, Berlin-Heidelberg-New York, 1979. Zbl0426.17001MR81m:17011
  16. [16] G. KEMPF, Linear Systems on Homogeneous Spaces (Ann. Math., Vol. 103, 1976, pp. 557-591). Zbl0327.14016MR53 #13229
  17. [17] G. LUSTIG, Some Problems in the Representation Theory of Finite Chevalley Groups (Proc. Symp. Pure Math., Vol. 37, 1980, pp. 313-317). Zbl0453.20005MR82i:20014
  18. [18] J.-P. SERRE, Groupe de Grothendieck des schémas en groupes réductifs déployés (Publ. Math. I.H.E.S., Vol. 34, 1968, pp. 37-52). Zbl0195.50802MR38 #159

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.