Local homology of groups of volume-preserving diffeomorphisms. III

Dusa McDuff

Annales scientifiques de l'École Normale Supérieure (1983)

  • Volume: 16, Issue: 4, page 529-540
  • ISSN: 0012-9593

How to cite

top

McDuff, Dusa. "Local homology of groups of volume-preserving diffeomorphisms. III." Annales scientifiques de l'École Normale Supérieure 16.4 (1983): 529-540. <http://eudml.org/doc/82128>.

@article{McDuff1983,
author = {McDuff, Dusa},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {local homology of groups of volume preserving diffeomorphisms},
language = {eng},
number = {4},
pages = {529-540},
publisher = {Elsevier},
title = {Local homology of groups of volume-preserving diffeomorphisms. III},
url = {http://eudml.org/doc/82128},
volume = {16},
year = {1983},
}

TY - JOUR
AU - McDuff, Dusa
TI - Local homology of groups of volume-preserving diffeomorphisms. III
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1983
PB - Elsevier
VL - 16
IS - 4
SP - 529
EP - 540
LA - eng
KW - local homology of groups of volume preserving diffeomorphisms
UR - http://eudml.org/doc/82128
ER -

References

top
  1. [1] A. BANYAGA, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique (Comm. Math. Helv., 53, 1978, pp. 174-227). Zbl0393.58007MR80c:58005
  2. [2] R. BROOKS and P. TRAUBER, The van Est Theorem for Groups of Diffeomorphisms (Hadronic Journ., 1, 1978, pp. 141-146). Zbl0422.58013MR80b:58020
  3. [3] M. L. GROMOV, Stable Mappings of Foliations into Manifolds (Math. U.S.S.R. Izv. 3, 1969, pp. 671-694). Zbl0205.53502MR41 #7708
  4. [4] A. HAEFLIGER, Homotopy and Integrability, in Manifolds-Amsterdam, 1970 (Springer Lecture Notes, # 197, 1971, pp. 133-163). Zbl0215.52403MR44 #2251
  5. [5] A. HAEFLIGER, Differential Cohomology, Summer School in Varenna, 1976, C.I.M.E., 1979. Zbl0467.57007
  6. [6] S. HURDER, Global Invariants for Measured Foliations, preprint, 1982. Zbl0517.57012
  7. [7] J. MATHER, Foliations and Local Homology of Groups of Diffeomorphisms, Proceedings of the ICM, Vancouver 1974. Zbl0333.57015
  8. [8] D. MCDUFF, Foliations and Manoids of Embeddings, in Geometric Topology, Cantrell, Academic Press, 1979, pp. 429-444. Zbl0473.57016MR82m:57014
  9. [9] D. MCDUFF, The Homology of Some Groups of Diffeomorphisms (Comm. Math. Helv., 55, 1980, pp. 97-129). Zbl0448.57015MR81j:57018
  10. [10] D. MCDUFF, Local Homology of Groups of Volume-preserving Diffeomorphisms, I (Ann. Sc. Éc. Norm. Sup., 1982, pp. 609-648). Zbl0577.58005MR85i:58028
  11. [11] D. MCDUFF, Local Homology of Groups of Volume-preserving Diffeomorphisms, II (Comm. Math. Helv., 58, 1983, pp. 135-165). Zbl0598.57020MR86j:58019a
  12. [12] D. MCDUFF, Some Canonical Cohomology Classes on Groups of Volume-preserving Diffeomorphisms, Trans. A.M.S., 275, 1983, pp. 345-356. Zbl0522.57029MR84h:58154
  13. [13] D. QUILLEN, Higher Algebraic K-Theory I, in Springer Lect. Notes # 341, 1973, pp. 75-148. Zbl0292.18004MR49 #2895
  14. [14] G. B. SEGAL, Classifying spaces and spectral sequences (Publ. Math. I.H.E.S., 34, 1968, pp. 105-112. Zbl0199.26404MR38 #718
  15. [15] G. B. SEGAL, Classifying Spaces Related to Foliations (Topology, 17, 1978, pp. 367-382). Zbl0398.57018MR80h:57036
  16. [16] W. THURSTON, On the Structure of the Group of Volume-preserving Diffeomorphisms, preprint, 1973. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.