A post-predictive view of gaussian processes

F. B. Knight

Annales scientifiques de l'École Normale Supérieure (1983)

  • Volume: 16, Issue: 4, page 541-566
  • ISSN: 0012-9593

How to cite

top

Knight, F. B.. "A post-predictive view of gaussian processes." Annales scientifiques de l'École Normale Supérieure 16.4 (1983): 541-566. <http://eudml.org/doc/82129>.

@article{Knight1983,
author = {Knight, F. B.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Gaussian martingales with independent increments; spectral representation; index of stationarity; index of multiplicity},
language = {eng},
number = {4},
pages = {541-566},
publisher = {Elsevier},
title = {A post-predictive view of gaussian processes},
url = {http://eudml.org/doc/82129},
volume = {16},
year = {1983},
}

TY - JOUR
AU - Knight, F. B.
TI - A post-predictive view of gaussian processes
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1983
PB - Elsevier
VL - 16
IS - 4
SP - 541
EP - 566
LA - eng
KW - Gaussian martingales with independent increments; spectral representation; index of stationarity; index of multiplicity
UR - http://eudml.org/doc/82129
ER -

References

top
  1. [1] C. DELLACHERIE et P.-A. MEYER, Probabilités et Potentiel, Chap. I-IV, V-VIII, Hermann, Paris, 1980. MR82b:60001
  2. [2] H. CRAMER, On Some Classes of Non-stationary Stochastic Processes (Proc. of the Fourth Berkeley Symposium II, J. NEYMAN, Ed., Univ. of California Press, 1961, p. 57-78). Zbl0121.35001MR27 #815
  3. [3] H. CRAMER, Stochastic Processes as Curves in Hilbert Space (Theory of Probability and its Applications, Vol. IX, N° 2, 1964, pp. 169-177). Zbl0161.14602MR30 #613
  4. [4] J. L. DOOB, Stochastic Processes, Wiley, 1953. Zbl0053.26802MR15,445b
  5. [5] N. DUNFORD and J. SCHWARTZ, Linear Operators, Part I, Interscience, 1958. Zbl0084.10402MR22 #8302
  6. [6] H. DYM and H. P. MCKEAN, Gaussian Processes, Function Theory, and the Inverse Spectral Problem, Academic Press, 1976. Zbl0327.60029MR56 #6829
  7. [7] P. R. HALMOS, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, Chelsea, 1951. Zbl0045.05702MR13,563a
  8. [8] T. HIDA, Canonical Representations of Gaussian Processes and Their Applications (Memoirs of the College of Science, Univ. of Kyoto, Series A, (1), Vol. 33, 1960, pp. 109-155). Zbl0100.34302MR22 #10012
  9. [9] A. N. KOLMOGOROV, Sur l'interpolation et extrapolation des suites stationnaires (C. R. Acad. Sc., Paris, Vol. 208, 1939, pp. 2043-2045). Zbl0021.42204JFM65.0607.04
  10. [10] J. DE SAM LAZARO and P. A. MEYER, Questions de la théorie des flots (VI) Sém. de Prob. IX (Lecture Notes in Math., N° 465, Springer, 1975, pp. 73-88). Zbl0311.60019MR55 #1431
  11. [11] P. LÉVY, Wiener's Random Function, and Other Laplacian Random Functions (Proc. of the Second Berkeley Symposium, J. NEYMAN, Ed., Univ. of California Press, 1951, pp. 171-188). Zbl0044.13802MR13,476b
  12. [12] P. LÉVY, A Special Problem of Brownian Motion, and a General Theory of Gaussian Random Functions (Proc. of the Third Berkeley Symposium, J. NEYMAN, Ed., Univ. of California Press, 1956, pp. 133-176). Zbl0071.35101MR19,893e
  13. [13] S. SAKS, Theory of the Integral, 2nd Revised Edition, Dover, 1964. 
  14. [14] J. WALSH, Some Topologies Connected with Lebesgue Measure, Sem. de Prob. V (Lecture Notes in Math. 191, Springer, 1971, pp. 290-310). MR51 #11638
  15. [15] N. WIENER, Extrapolation, Interpolation, and Smoothing of Stationary Time Series, Wiley, 1949. Zbl0036.09705MR11,118j
  16. [16] H. WOLD, A Study in the Analysis of Stationary Time Series, Uppsala, 1938. Zbl0019.35602JFM64.1200.02
  17. [17] A. M. YAGLOM, An Introduction to the Theory of Stationary Random Functions, R. SILVERMAN, Ed., transl. Prentice-Hall Inc., 1962. Zbl0121.12601MR32 #1762

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.