Hitting probabilities of killed brownian motion : a study on geometric regularity

Christer Borell

Annales scientifiques de l'École Normale Supérieure (1984)

  • Volume: 17, Issue: 3, page 451-467
  • ISSN: 0012-9593

How to cite

top

Borell, Christer. "Hitting probabilities of killed brownian motion : a study on geometric regularity." Annales scientifiques de l'École Normale Supérieure 17.3 (1984): 451-467. <http://eudml.org/doc/82149>.

@article{Borell1984,
author = {Borell, Christer},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {hitting time; convexity properties; V-harmonic measures; V-Newtonian potentials; V-equilibrium measures; logarithmic and Newtonian potentials},
language = {eng},
number = {3},
pages = {451-467},
publisher = {Elsevier},
title = {Hitting probabilities of killed brownian motion : a study on geometric regularity},
url = {http://eudml.org/doc/82149},
volume = {17},
year = {1984},
}

TY - JOUR
AU - Borell, Christer
TI - Hitting probabilities of killed brownian motion : a study on geometric regularity
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1984
PB - Elsevier
VL - 17
IS - 3
SP - 451
EP - 467
LA - eng
KW - hitting time; convexity properties; V-harmonic measures; V-Newtonian potentials; V-equilibrium measures; logarithmic and Newtonian potentials
UR - http://eudml.org/doc/82149
ER -

References

top
  1. [1] L. V. AHLFORS, Conformal Invariants (Topics in Geometric Function Theory, New York, McGraw Hill, 1973). Zbl0272.30012
  2. [2] L. V. AHLFORS, Möbius Transformations in Several Dimensions (School of Math., Univ. of Minnesota 1981). Zbl0517.30001
  3. [3] R. M. BLUMENTHAL, and R. K. GETOOR, Markov Processes and Potential Theory, New York, London, Academic Press 1968. Zbl0169.49204MR41 #9348
  4. [4] C. BORELL, Capacitary Inequalities of the Brunn-Minkowski Type (Math. Ann., 263, 1983, pp. 179-184). Zbl0546.31001MR84e:31005
  5. [5] C. BORELL, Brownian Motion in a Convex Ring and Quasi-Concavity (Commun. Math. Phys., 86, 1982, pp. 143-147). Zbl0516.60084MR84g:60130
  6. [6] C. BORELL, Convex Measures on Locally Convex Spaces (Ark. Mat., 12, 1974, pp. 239-252). Zbl0297.60004MR52 #9311
  7. [7] C. BORELL, Convexity of Measures in Certain Convex Cones in Vector Space σ-Algebras (Math. Scand. 53, 1983, pp. 125-144). Zbl0568.46007MR86f:60010
  8. [8] C. BORELL, Convex Set Functions in d-space (Period. Math., Hungar, 6, 1975, pp. 111-136). Zbl0274.28009MR53 #8359
  9. [9] H. J. BRASCAMP and E. H. LIEB, Some Inequalities for Gaussian Measures, In : Functional Integral and Its Applications, Edited by A. M. Arthurs, Oxford, Clarendon Press, 1975. Zbl0348.26011
  10. [10] H. J. BRASCAMP and E. H. LIEB, On Extensions of the Brunn-Minkowski and Prékopa-Leindler Theorems, Including Inequalities for Log Concave Functions, and with an Application to the Diffusion Equation, Berlin, Heidelberg, New York : Springer-Verlag, 644, 1978, pp. 96-124). 
  11. [11] R. CARMONA, Tensor Product of Gaussian Measures (Lecture Notes in Math., 644, 1978, pp. 96-124). Berlin, Heidelberg, New York, Springer-Verlag. Zbl0386.28017MR80a:60039
  12. [12] P. L. CHOW, Stochastic Partial Differential Equations in Turbulence Related Problems, In : Probabilistic Analysis and Related Topics, Vol. 1, Edited by A. T. Bharucha-Reid, New York, San Francisco, London, Academic Press, 1978. Zbl0449.60046MR58 #7847
  13. [13] E. B. DYNKIN, Markov processes, Vol. I-II, Berlin, Göttingen, Heidelberg, Springer-Verlag, 1965. Zbl0132.37901MR33 #1887
  14. [14] A. EHRHARD, Symétrisation dans l'espace de Gauss (Math. Scand. 53, 1983, pp. 281-301). Zbl0542.60003MR85f:60058
  15. [15] R. M. GABRIEL, An Extended Principle of the Maximum for Harmonic Functions in 3-dimensions (J. London Math. Soc., 30, 1955, pp. 388-401). Zbl0068.08303MR17,358c
  16. [16] R. M. GABRIEL, A Result Concerning Convex Level Surfaces of 3-dimensional Harmonic Functions (J. London Math. Soc., 32, 1957, pp. 286-294). Zbl0087.09702MR19,848a
  17. [17] D. GILBARG and N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Berlin, Heidelberg, New York, Springer-Verlag, 1977. Zbl0361.35003MR57 #13109
  18. [18] L. GROSS, Potential Theory on Hilbert Space (J. Functional Analysis, 1, 1967, pp. 123-181). Zbl0165.16403MR37 #3331
  19. [19] J. L. LEWIS, Capacitary Functions in Convex Rings (Arch. Rational Mech. Anal., 66, 1977, pp. 201-224). Zbl0393.46028MR57 #16638
  20. [20] P. L. LIONS, Two Geometrical Properties of Solutions of Semilinear problems (Applicable Analysis, 12, 1981, pp. 267-272). Zbl0445.35043MR83e:35051
  21. [21] G. PÓLYA and G. SZEGÖ, Aufgaben und Lehrsötze aus der Analysis II, Berlin, Göttingen, Heidelberg, Springer-Verlag, 1954. Zbl0055.27803
  22. [22] S. C. PORT and C. J. STONE, Brownian Motion and Classical Potential Theory, New York, San Francisco, London, Academic Press, 1978. Zbl0413.60067MR58 #11459
  23. [23] G. SZEGÖ, Über Einige Neue Extremaleigenschaften der Kugel. Math. Zeit., 33, 1931, pp. 419-425). Zbl0001.07001JFM57.0573.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.