Hitting probabilities of killed brownian motion : a study on geometric regularity
Annales scientifiques de l'École Normale Supérieure (1984)
- Volume: 17, Issue: 3, page 451-467
- ISSN: 0012-9593
Access Full Article
topHow to cite
topBorell, Christer. "Hitting probabilities of killed brownian motion : a study on geometric regularity." Annales scientifiques de l'École Normale Supérieure 17.3 (1984): 451-467. <http://eudml.org/doc/82149>.
@article{Borell1984,
author = {Borell, Christer},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {hitting time; convexity properties; V-harmonic measures; V-Newtonian potentials; V-equilibrium measures; logarithmic and Newtonian potentials},
language = {eng},
number = {3},
pages = {451-467},
publisher = {Elsevier},
title = {Hitting probabilities of killed brownian motion : a study on geometric regularity},
url = {http://eudml.org/doc/82149},
volume = {17},
year = {1984},
}
TY - JOUR
AU - Borell, Christer
TI - Hitting probabilities of killed brownian motion : a study on geometric regularity
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1984
PB - Elsevier
VL - 17
IS - 3
SP - 451
EP - 467
LA - eng
KW - hitting time; convexity properties; V-harmonic measures; V-Newtonian potentials; V-equilibrium measures; logarithmic and Newtonian potentials
UR - http://eudml.org/doc/82149
ER -
References
top- [1] L. V. AHLFORS, Conformal Invariants (Topics in Geometric Function Theory, New York, McGraw Hill, 1973). Zbl0272.30012
- [2] L. V. AHLFORS, Möbius Transformations in Several Dimensions (School of Math., Univ. of Minnesota 1981). Zbl0517.30001
- [3] R. M. BLUMENTHAL, and R. K. GETOOR, Markov Processes and Potential Theory, New York, London, Academic Press 1968. Zbl0169.49204MR41 #9348
- [4] C. BORELL, Capacitary Inequalities of the Brunn-Minkowski Type (Math. Ann., 263, 1983, pp. 179-184). Zbl0546.31001MR84e:31005
- [5] C. BORELL, Brownian Motion in a Convex Ring and Quasi-Concavity (Commun. Math. Phys., 86, 1982, pp. 143-147). Zbl0516.60084MR84g:60130
- [6] C. BORELL, Convex Measures on Locally Convex Spaces (Ark. Mat., 12, 1974, pp. 239-252). Zbl0297.60004MR52 #9311
- [7] C. BORELL, Convexity of Measures in Certain Convex Cones in Vector Space σ-Algebras (Math. Scand. 53, 1983, pp. 125-144). Zbl0568.46007MR86f:60010
- [8] C. BORELL, Convex Set Functions in d-space (Period. Math., Hungar, 6, 1975, pp. 111-136). Zbl0274.28009MR53 #8359
- [9] H. J. BRASCAMP and E. H. LIEB, Some Inequalities for Gaussian Measures, In : Functional Integral and Its Applications, Edited by A. M. Arthurs, Oxford, Clarendon Press, 1975. Zbl0348.26011
- [10] H. J. BRASCAMP and E. H. LIEB, On Extensions of the Brunn-Minkowski and Prékopa-Leindler Theorems, Including Inequalities for Log Concave Functions, and with an Application to the Diffusion Equation, Berlin, Heidelberg, New York : Springer-Verlag, 644, 1978, pp. 96-124).
- [11] R. CARMONA, Tensor Product of Gaussian Measures (Lecture Notes in Math., 644, 1978, pp. 96-124). Berlin, Heidelberg, New York, Springer-Verlag. Zbl0386.28017MR80a:60039
- [12] P. L. CHOW, Stochastic Partial Differential Equations in Turbulence Related Problems, In : Probabilistic Analysis and Related Topics, Vol. 1, Edited by A. T. Bharucha-Reid, New York, San Francisco, London, Academic Press, 1978. Zbl0449.60046MR58 #7847
- [13] E. B. DYNKIN, Markov processes, Vol. I-II, Berlin, Göttingen, Heidelberg, Springer-Verlag, 1965. Zbl0132.37901MR33 #1887
- [14] A. EHRHARD, Symétrisation dans l'espace de Gauss (Math. Scand. 53, 1983, pp. 281-301). Zbl0542.60003MR85f:60058
- [15] R. M. GABRIEL, An Extended Principle of the Maximum for Harmonic Functions in 3-dimensions (J. London Math. Soc., 30, 1955, pp. 388-401). Zbl0068.08303MR17,358c
- [16] R. M. GABRIEL, A Result Concerning Convex Level Surfaces of 3-dimensional Harmonic Functions (J. London Math. Soc., 32, 1957, pp. 286-294). Zbl0087.09702MR19,848a
- [17] D. GILBARG and N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Berlin, Heidelberg, New York, Springer-Verlag, 1977. Zbl0361.35003MR57 #13109
- [18] L. GROSS, Potential Theory on Hilbert Space (J. Functional Analysis, 1, 1967, pp. 123-181). Zbl0165.16403MR37 #3331
- [19] J. L. LEWIS, Capacitary Functions in Convex Rings (Arch. Rational Mech. Anal., 66, 1977, pp. 201-224). Zbl0393.46028MR57 #16638
- [20] P. L. LIONS, Two Geometrical Properties of Solutions of Semilinear problems (Applicable Analysis, 12, 1981, pp. 267-272). Zbl0445.35043MR83e:35051
- [21] G. PÓLYA and G. SZEGÖ, Aufgaben und Lehrsötze aus der Analysis II, Berlin, Göttingen, Heidelberg, Springer-Verlag, 1954. Zbl0055.27803
- [22] S. C. PORT and C. J. STONE, Brownian Motion and Classical Potential Theory, New York, San Francisco, London, Academic Press, 1978. Zbl0413.60067MR58 #11459
- [23] G. SZEGÖ, Über Einige Neue Extremaleigenschaften der Kugel. Math. Zeit., 33, 1931, pp. 419-425). Zbl0001.07001JFM57.0573.03
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.