Sur un problème de crible et ses applications

Gérald Tenenbaum

Annales scientifiques de l'École Normale Supérieure (1986)

  • Volume: 19, Issue: 1, page 1-30
  • ISSN: 0012-9593

How to cite

top

Tenenbaum, Gérald. "Sur un problème de crible et ses applications." Annales scientifiques de l'École Normale Supérieure 19.1 (1986): 1-30. <http://eudml.org/doc/82172>.

@article{Tenenbaum1986,
author = {Tenenbaum, Gérald},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {divisor function; linear sieve; practical numbers; small sieve},
language = {fre},
number = {1},
pages = {1-30},
publisher = {Elsevier},
title = {Sur un problème de crible et ses applications},
url = {http://eudml.org/doc/82172},
volume = {19},
year = {1986},
}

TY - JOUR
AU - Tenenbaum, Gérald
TI - Sur un problème de crible et ses applications
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1986
PB - Elsevier
VL - 19
IS - 1
SP - 1
EP - 30
LA - fre
KW - divisor function; linear sieve; practical numbers; small sieve
UR - http://eudml.org/doc/82172
ER -

References

top
  1. [1] J. D. BOVEY, On the Size of Prime Factors of Integers (Acta Arith., vol. 33, 1977, p. 65-80). Zbl0353.10033MR437476
  2. [2] P. ERDÖS, On the Distribution Function of Additive Functions (Ann. of Math., vol. 47, 1946, p. 1-20). Zbl0061.07902MR15424
  3. [3] P. ERDÖSOn Some Properties of Prime Factors of Integers (Nagoya Math. J., vol. 27, 1966, p. 617-623). Zbl0151.03501MR204378
  4. [4] P. ERDÖS et I. Z. RUZSA, On the Small Sieve. I. Sifting by Primes, (J. Number Theory, vol. 12, 1980, p. 385-394). Zbl0435.10028MR586468
  5. [5] J. B. FRIEDLANDER, Integers Free from Large and Small Primes (Proc. London Math. Soc., (3), n° 33, 1976, p. 565-576). Zbl0344.10021MR417078
  6. [6] G. HALÁSZ, Remarks to my paper: "On the Distribution of Additive and the Mean Value of Multiplicative Arithmetic Functions" (Acta Math. Acad. Scient. Hung., vol. 23, (3-4), 1972, p. 425-432). Zbl0255.10046MR319931
  7. [7] H. HALBERSTAM et K. F. ROTH, Sequences, Oxford at the Clarendon Press, 1966. Zbl0141.04405MR210679
  8. [8] G. H. HARDY et E. M. WRIGHT, An Introduction to the Theory of Numbers, Oxford at the Clarendon Press, 5e éd., 1979. Zbl0423.10001MR568909
  9. [9] M. HAUSMAN et H. N. SHAPIRO, On Pratical Numbers (Comm. Pure and Applied Math., vol. 37, 1984, p. 705-713). Zbl0544.10005MR752596
  10. [10] M. N. HUXLEY, The distribution of prime numbers, Oxford at the Clarendon Press, 1972. Zbl0248.10030MR444593
  11. [11] H. IWANIEC, Rosser's Sieve - Bilinear Forms of the Remainder Terms - Some Applications (Recent Progress in Analytic Number Theory, Vol. 1, H. HALBERSTAM and C. HOOLEY éd., Academic Press, 1981, p. 203-230). Zbl0457.10026MR637348
  12. [12] M. MARGENSTERN, Résultats et conjectures sur les nombres pratiques (C.R. Acad. Sc. Paris, t. 299, série I, n° 18, 1984, p. 895-898). Zbl0572.10007MR774662
  13. [13] K. K. NORTON, On the Number of Restricted Prime Factors of an Integer I (Ill. J. Math., vol. 20, 1976, p. 681-705). Zbl0329.10035MR419382
  14. [14] I. Z. RUZSA, On the Small Sieve II. Sifting by Composite Numbers (J. Number Theory, vol. 14, 1982, p. 260-268). Zbl0481.10045MR655730
  15. [15] A. SCHINZEL et G. SZEKERES, Sur un problème de M. Paul Erdös (Acta Sc. Math. Szeged, vol. 20, 1959, p. 221-229). Zbl0099.02702MR112864
  16. [16] B. M. STEWART, Sums of Distinct Divisors (Amer. J. Math., vol. 76, 1954, p. 779-785). Zbl0056.27004MR64800
  17. [17] G. TENENBAUM, Lois de répartition des diviseurs, 5 (J. London Math. Soc., (2), n° 20, 1979, p. 165-176). Zbl0422.10050MR551441
  18. [18] G. TENENBAUM, Sur la probabilité qu'un entier possède un diviseur dans un intervalle donné (Compositio Math., vol. 51, 1984, p. 243-263). Zbl0541.10038MR739737

NotesEmbed ?

top

You must be logged in to post comments.