Sur un problème de crible et ses applications

Gérald Tenenbaum

Annales scientifiques de l'École Normale Supérieure (1986)

  • Volume: 19, Issue: 1, page 1-30
  • ISSN: 0012-9593

How to cite

top

Tenenbaum, Gérald. "Sur un problème de crible et ses applications." Annales scientifiques de l'École Normale Supérieure 19.1 (1986): 1-30. <http://eudml.org/doc/82172>.

@article{Tenenbaum1986,
author = {Tenenbaum, Gérald},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {divisor function; linear sieve; practical numbers; small sieve},
language = {fre},
number = {1},
pages = {1-30},
publisher = {Elsevier},
title = {Sur un problème de crible et ses applications},
url = {http://eudml.org/doc/82172},
volume = {19},
year = {1986},
}

TY - JOUR
AU - Tenenbaum, Gérald
TI - Sur un problème de crible et ses applications
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1986
PB - Elsevier
VL - 19
IS - 1
SP - 1
EP - 30
LA - fre
KW - divisor function; linear sieve; practical numbers; small sieve
UR - http://eudml.org/doc/82172
ER -

References

top
  1. [1] J. D. BOVEY, On the Size of Prime Factors of Integers (Acta Arith., vol. 33, 1977, p. 65-80). Zbl0353.10033MR437476
  2. [2] P. ERDÖS, On the Distribution Function of Additive Functions (Ann. of Math., vol. 47, 1946, p. 1-20). Zbl0061.07902MR15424
  3. [3] P. ERDÖSOn Some Properties of Prime Factors of Integers (Nagoya Math. J., vol. 27, 1966, p. 617-623). Zbl0151.03501MR204378
  4. [4] P. ERDÖS et I. Z. RUZSA, On the Small Sieve. I. Sifting by Primes, (J. Number Theory, vol. 12, 1980, p. 385-394). Zbl0435.10028MR586468
  5. [5] J. B. FRIEDLANDER, Integers Free from Large and Small Primes (Proc. London Math. Soc., (3), n° 33, 1976, p. 565-576). Zbl0344.10021MR417078
  6. [6] G. HALÁSZ, Remarks to my paper: "On the Distribution of Additive and the Mean Value of Multiplicative Arithmetic Functions" (Acta Math. Acad. Scient. Hung., vol. 23, (3-4), 1972, p. 425-432). Zbl0255.10046MR319931
  7. [7] H. HALBERSTAM et K. F. ROTH, Sequences, Oxford at the Clarendon Press, 1966. Zbl0141.04405MR210679
  8. [8] G. H. HARDY et E. M. WRIGHT, An Introduction to the Theory of Numbers, Oxford at the Clarendon Press, 5e éd., 1979. Zbl0423.10001MR568909
  9. [9] M. HAUSMAN et H. N. SHAPIRO, On Pratical Numbers (Comm. Pure and Applied Math., vol. 37, 1984, p. 705-713). Zbl0544.10005MR752596
  10. [10] M. N. HUXLEY, The distribution of prime numbers, Oxford at the Clarendon Press, 1972. Zbl0248.10030MR444593
  11. [11] H. IWANIEC, Rosser's Sieve - Bilinear Forms of the Remainder Terms - Some Applications (Recent Progress in Analytic Number Theory, Vol. 1, H. HALBERSTAM and C. HOOLEY éd., Academic Press, 1981, p. 203-230). Zbl0457.10026MR637348
  12. [12] M. MARGENSTERN, Résultats et conjectures sur les nombres pratiques (C.R. Acad. Sc. Paris, t. 299, série I, n° 18, 1984, p. 895-898). Zbl0572.10007MR774662
  13. [13] K. K. NORTON, On the Number of Restricted Prime Factors of an Integer I (Ill. J. Math., vol. 20, 1976, p. 681-705). Zbl0329.10035MR419382
  14. [14] I. Z. RUZSA, On the Small Sieve II. Sifting by Composite Numbers (J. Number Theory, vol. 14, 1982, p. 260-268). Zbl0481.10045MR655730
  15. [15] A. SCHINZEL et G. SZEKERES, Sur un problème de M. Paul Erdös (Acta Sc. Math. Szeged, vol. 20, 1959, p. 221-229). Zbl0099.02702MR112864
  16. [16] B. M. STEWART, Sums of Distinct Divisors (Amer. J. Math., vol. 76, 1954, p. 779-785). Zbl0056.27004MR64800
  17. [17] G. TENENBAUM, Lois de répartition des diviseurs, 5 (J. London Math. Soc., (2), n° 20, 1979, p. 165-176). Zbl0422.10050MR551441
  18. [18] G. TENENBAUM, Sur la probabilité qu'un entier possède un diviseur dans un intervalle donné (Compositio Math., vol. 51, 1984, p. 243-263). Zbl0541.10038MR739737

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.