p -adic estimates for exponential sums and the theorem of Chevalley-Warning

Alan Adolphson; Steven Sperber

Annales scientifiques de l'École Normale Supérieure (1987)

  • Volume: 20, Issue: 4, page 545-556
  • ISSN: 0012-9593

How to cite

top

Adolphson, Alan, and Sperber, Steven. "$p$-adic estimates for exponential sums and the theorem of Chevalley-Warning." Annales scientifiques de l'École Normale Supérieure 20.4 (1987): 545-556. <http://eudml.org/doc/82212>.

@article{Adolphson1987,
author = {Adolphson, Alan, Sperber, Steven},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {L-functions; p-divisibility of certain exponential sums over finite fields; theorem of Chevalley-Warning},
language = {eng},
number = {4},
pages = {545-556},
publisher = {Elsevier},
title = {$p$-adic estimates for exponential sums and the theorem of Chevalley-Warning},
url = {http://eudml.org/doc/82212},
volume = {20},
year = {1987},
}

TY - JOUR
AU - Adolphson, Alan
AU - Sperber, Steven
TI - $p$-adic estimates for exponential sums and the theorem of Chevalley-Warning
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1987
PB - Elsevier
VL - 20
IS - 4
SP - 545
EP - 556
LA - eng
KW - L-functions; p-divisibility of certain exponential sums over finite fields; theorem of Chevalley-Warning
UR - http://eudml.org/doc/82212
ER -

References

top
  1. [1] A. ADOLPHSON and S. SPERBER, Exponential Sums on the Complement of a Hypersurface (Amer. J. Math., Vol. 102, 1980, pp. 461-487). Zbl0444.12016MR82c:14023
  2. [2] A. ADOLPHSON and S. SPERBER, On the degree of the L-function associated with an exponential sum (to appear). Zbl0665.12022
  3. [3] A. ADOLPHSON and S. SPERBER, Newton Polyhedra and the Degree of the L-Function Associated to an Exponential Sum (Invent. Math., Vol. 88, 1987, pp. 555-569). Zbl0623.12012MR89d:11064
  4. [4] J. AX, Zeroes of Polynomials over Finite Fields (Amer. J. Math., Vol. 86, 1964, pp. 255-261). Zbl0121.02003MR28 #3986
  5. [5] P. CASSOU-NOGUÈS, Séries de Dirichlet et intégrales associées à un polynôme à deux indéterminées (J. of Number Theory, Vol. 23, 1986, pp. 1-54). Zbl0584.10022MR87j:11086
  6. [6] P. DELIGNE, Cohomologie des intersections complètes in Groupes de Monodromie en Géométrie Algébrique (SGA 7 II) (Lecture Notes in Math., No. 340, P. DELIGNE and N. KATZ, pp. 39-61, Berlin-Heidelberg - New York - Tokyo, Springer, 1973). Zbl0265.14007MR50 #7135
  7. [7] B. DWORK, On the Zeta Function of a Hypersurface (Publ. Math. I.H.E.S., Vol. 12, 1962, pp. 5-68). Zbl0173.48601MR28 #3039
  8. [8] B. DWORK, On the Zeta Function of a Hypersurface, II (Ann. of Math., Vol. 80, 1964, pp. 227-299). Zbl0173.48601MR32 #5654
  9. [9] F. EHLERS and K.-C. LO, Minimal Characteristic Exponent of the Gauss-Manin Connection of Isolated Singular Point and Newton Polyhedron (Math. Ann., Vol. 259, 1982, pp. 431-441). Zbl0469.32004MR83j:32009
  10. [10] N. KATZ, On a theorem of Ax (Amer. J. Math., Vol. 93, 1971, pp. 485-499). Zbl0237.12012MR44 #5297
  11. [11] A. G. KOUCHNIRENKO, Polyèdres de Newton et nombres de Milnor (Invent. Math., Vol. 32, 1976, pp. 1-31). Zbl0328.32007MR54 #7454
  12. [12] B. LICHTIN and D. MEUSER, Poles of a Local Zeta Function and Newton Polygons (Comp. Math., Vol. 55, 1985, pp. 313-332). Zbl0606.14022MR87a:11120
  13. [13] B. MAZUR, Frobenius and the Hodge filtration (estimates) (Ann. of Math., Vol. 98, 1973, pp. 58-95). Zbl0261.14005MR48 #297
  14. [14] P. MONSKY, p-Adic Analysis and Zeta Functions (Lectures in Mathematics, Kyoto University, Tokyo, Kinokuniya Bookstore). Zbl0256.14009
  15. [15] J.-P. SERRE, Endomorphismes complètement continus des espaces de Banach p-adiques (Publ. Math. I.H.E.S., Vol. 12, 1962, p. 69-85). Zbl0104.33601MR26 #1733
  16. [16] S. SPERBER, On the p-Adic Theory of Exponential Sums (Amer. J. Math., Vol. 108, 1986, pp. 255-296). Zbl0588.14017MR87j:11055
  17. [17] E. WARNING, Bemerkung zur vorstehenden Arbeit von Herr Chevalley (Abh. Math. Sem. Univ. Hamburg, Vol. 11, 1936, pp. 76-83). Zbl0011.14601JFM61.1043.02
  18. [18] A. WEIL, Number of Solutions of Equations in Finite Fields (Bull. Amer. Math. Soc., Vol. 55, 1949, pp. 497-508). Zbl0032.39402MR10,592e

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.