The socle filtration of a Verma module

Ronald S. Irving

Annales scientifiques de l'École Normale Supérieure (1988)

  • Volume: 21, Issue: 1, page 47-65
  • ISSN: 0012-9593

How to cite

top

Irving, Ronald S.. "The socle filtration of a Verma module." Annales scientifiques de l'École Normale Supérieure 21.1 (1988): 47-65. <http://eudml.org/doc/82220>.

@article{Irving1988,
author = {Irving, Ronald S.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Kazhdan-Lusztig conjectures; socle; radical filtrations; Verma module; Kazhdan-Lusztig polynomials; Loewy length},
language = {eng},
number = {1},
pages = {47-65},
publisher = {Elsevier},
title = {The socle filtration of a Verma module},
url = {http://eudml.org/doc/82220},
volume = {21},
year = {1988},
}

TY - JOUR
AU - Irving, Ronald S.
TI - The socle filtration of a Verma module
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1988
PB - Elsevier
VL - 21
IS - 1
SP - 47
EP - 65
LA - eng
KW - Kazhdan-Lusztig conjectures; socle; radical filtrations; Verma module; Kazhdan-Lusztig polynomials; Loewy length
UR - http://eudml.org/doc/82220
ER -

References

top
  1. [1] D. BARBASCH, Filtrations on Verma Modules (Ann. Scient. Éc. Norm. Sup., Vol. 16, 1983, pp. 489-494). Zbl0581.17002MR85j:17013
  2. [2] A. BEILINSON, Localization of Representations of Reductive Lie Algebras (Proc. of the I.C.M., 1983, Warsaw, North Holland 1984, pp. 699-710). Zbl0571.20032MR86m:17007
  3. [3] A. BEILINSON and J. BERNSTEIN, Localisation de g-modules (C.R. Acad. Sci. Paris, T. 292, 1981, pp. 15-18). Zbl0476.14019MR82k:14015
  4. [4] A. BEILINSON, J. BERNSTEIN and P. DELIGNE, Analyse et topologie sur les espaces singuliers I, (Astérisque, Vol. 100, Soc. Math. de France, 1982). MR86g:32015
  5. [5] A. BEILINSON and V. GINSBURG, Mixed Categories, Ext-Duality and Representations (Results and Conjectures), preprint, 1986. 
  6. [6] J.-L. BRYLINSKI and M. KASHIWARA, Kazhdan-Lusztig Conjecture and Holonomic Systems, (Invent. Mat., Vol. 64, 1981, pp. 387-410). Zbl0473.22009MR83e:22020
  7. [7] L. CASIAN, Graded Characters of Induced Representations for Real Reductive Lie Groups, preprint, 1987. 
  8. [8] L. G. CASIAN and D. H. COLLINGWOOD, The Kazhdan-Lusztig Conjecture for Generalized Verma Modules (Math. Z., Vol. 195, 1987, pp. 581-600). Zbl0624.22010MR88i:17008
  9. [9] V. V. DEODHAR, On the Kazhdan-Lusztig Conjectures (Indag. Math., Vol. 85, 1982, pp. 1-17). Zbl0486.17004MR83e:17008
  10. [10] O. GABBER and A. JOSEPH, Towards the Kazhdan-Lusztig Conjecture (Ann. Scient. Éc. Norm. Sup., Vol. 14, 1981, pp. 261-302). Zbl0476.17005MR83e:17009
  11. [11] S. GELFAND and R. MACPHERSON, Verma Modules and Schubert Cells : a Dictionary (Séminaire d'Algèbre, 1980-1981, Springer Lecture Notes # 924). Zbl0512.22009MR84h:17004
  12. [12] R. S. IRVING, Projective Modules in the Category Os : Self-Duality (Trans. Amer. Math. Soc., Vol. 291, 1985, pp. 701-732). Zbl0594.17005MR87i:17005
  13. [13] R. S. IRVING, Projective Modules in the Category Os : Loewy Series (Trans. Amer. Math. Soc., Vol. 291, 1985, pp. 733-754). Zbl0594.17005MR87h:17007
  14. [14] R. S. IRVING, B.G.G. algebras (in preparation). 
  15. [15] A. JOSEPH, Goldie Rank in the Enveloping Algebra of a Semisimple Lie Algebra, III (J. Algebra, Vol. 73, 1981, pp. 295-326). Zbl0482.17002MR83k:17010
  16. [16] D. KAZHDAN and G. LUSZTIG, Representations of Coxeter Groups and Hecke Algebras (Invent. Math., Vol. 53, 1979, pp. 165-184). Zbl0499.20035MR81j:20066
  17. [17] D. KAZHDAN and G. LUSZTIG, Schubert Varieties and Poincaré Duality (Proc. Sympos. Pure Math., Vol. 36, Amer. Mat. Soc., Providence, R.I., 1980, pp. 185-203). Zbl0461.14015MR84g:14054
  18. [18] P. LANDROCK, Finite Group Algebras and their Modules, Cambridge U. Press, Cambridge, 1983. Zbl0523.20001MR85h:20002
  19. [19] G. LUSZTIG, Characters of Reductive Groups Over a Finite Field (Annals of Mathematics Studies, # 107, Princeton U. Press, Princeton, N.J., 1984). Zbl0556.20033MR86j:20038
  20. [20] D. A. VOGAN Jr., Irreducible Characters of Semisimple Lie Groups I (Duke Math. J., Vol. 46, 1979, pp. 61-108). Zbl0398.22021MR80g:22016
  21. [21] D. A. VOGAN Jr., Irreducible Characters of Semisimple Lie Groups II. The Kazhdan-Lusztig Conjectures (Duke Math. J., Vol. 46, 1979, pp. 805-859). Zbl0421.22008MR81f:22024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.