Conjugacy classes of finite solvable subgroups in Lie groups

Eric M. Friedlander; Guido Mislin

Annales scientifiques de l'École Normale Supérieure (1988)

  • Volume: 21, Issue: 2, page 179-191
  • ISSN: 0012-9593

How to cite

top

Friedlander, Eric M., and Mislin, Guido. "Conjugacy classes of finite solvable subgroups in Lie groups." Annales scientifiques de l'École Normale Supérieure 21.2 (1988): 179-191. <http://eudml.org/doc/82224>.

@article{Friedlander1988,
author = {Friedlander, Eric M., Mislin, Guido},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {locally finite approximation; compact Lie group; conjugacy classes of finite subgroups},
language = {eng},
number = {2},
pages = {179-191},
publisher = {Elsevier},
title = {Conjugacy classes of finite solvable subgroups in Lie groups},
url = {http://eudml.org/doc/82224},
volume = {21},
year = {1988},
}

TY - JOUR
AU - Friedlander, Eric M.
AU - Mislin, Guido
TI - Conjugacy classes of finite solvable subgroups in Lie groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1988
PB - Elsevier
VL - 21
IS - 2
SP - 179
EP - 191
LA - eng
KW - locally finite approximation; compact Lie group; conjugacy classes of finite subgroups
UR - http://eudml.org/doc/82224
ER -

References

top
  1. [1] A. BOREL, Properties and Linear Representations of Chevalley Groups (Lectures Notes in Math ; No. 131, Springer, 1970, pp. 1-50). Zbl0197.30501MR41 #3484
  2. [2] A. BOREL, On Proper Actions and Maximal Compact Subgroups of Locally Compact Groups (to appear). 
  3. [3] E. FRIEDLANDER, Etale Homotopy of Simplicial Schemes (Annals of Math Studies, Vol. 104, Princeton Univ. Press, 1982). Zbl0538.55001MR84h:55012
  4. [4] E. FRIEDLANDER, Multiplicative Stability for the Cohomology of finite Chevalley groups (Comment. Math. Helv., Vol. 63, 1988, pp. 108-113). Zbl0658.20024MR89b:20092
  5. [5] E. FRIEDLANDER and G. MISLIN, Locally Finite Approximation of Lie Groups I (Inventiones Math., Vol. 83, 1986, pp. 425-436). Zbl0566.55011MR87i:55038
  6. [6] E. FRIEDLANDER and G. MISLIN, Locally Finite Approximation of Lie Groups II (Math. Proc. Camb. Phil. Soc., Vol. 100, 1986, pp. 505-517). Zbl0621.55013MR88b:55016
  7. [7] J. LANNES, Sur la cohomologie modulo p des p-groupes Abéliens élémentaires (Homotopy Theory, Proceedings of the Durham Symposium 1985 London Math. Soc. Lecture Note Series No. 117, 1987, pp. 97-116). Zbl0654.55013MR89e:55037
  8. [8] J. MILNE, Etale Cohomology, Princeton University Press, 1980. Zbl0433.14012MR81j:14002
  9. [9] D. QUILLEN, The Spectrum of an Equivariant Cohomology ring, I and II (Annals of Math, Vol. 94, 1972, pp. 549-572 and 573-602). Zbl0247.57013MR45 #7743
  10. [10] Séminaire de géométrie algébrique (SGA3), Schémas en groupes, II (Lectures Notes in Math., No. 152, Springer, 1970). Zbl0209.24201
  11. [11] T. A. SPRINGER and R. STEINBERG, Conjugacy Classes (Lecture Notes in Math., No. 131, Springer, 1970, pp. 167-266). Zbl0249.20024MR42 #3091
  12. [12] R. STEINBERG, Endomorphisms of Linear Algebraic Groups (Memoirs of A.M.S., No. 80, 1968). Zbl0164.02902MR37 #6288

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.