An excess sphere theorem

Peter Petersen; Shun-Hui Zhu

Annales scientifiques de l'École Normale Supérieure (1993)

  • Volume: 26, Issue: 2, page 175-188
  • ISSN: 0012-9593

How to cite

top

Petersen, Peter, and Zhu, Shun-Hui. "An excess sphere theorem." Annales scientifiques de l'École Normale Supérieure 26.2 (1993): 175-188. <http://eudml.org/doc/82339>.

@article{Petersen1993,
author = {Petersen, Peter, Zhu, Shun-Hui},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {double soul theorem; bounded curvature; twisted sphere},
language = {eng},
number = {2},
pages = {175-188},
publisher = {Elsevier},
title = {An excess sphere theorem},
url = {http://eudml.org/doc/82339},
volume = {26},
year = {1993},
}

TY - JOUR
AU - Petersen, Peter
AU - Zhu, Shun-Hui
TI - An excess sphere theorem
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1993
PB - Elsevier
VL - 26
IS - 2
SP - 175
EP - 188
LA - eng
KW - double soul theorem; bounded curvature; twisted sphere
UR - http://eudml.org/doc/82339
ER -

References

top
  1. [A1] M. ANDERSON, Metrics of Positive Ricci Curvature with Large Diameter (Manu. Math., Vol. 68, 1990, pp. 405-415). Zbl0711.53036MR91g:53045
  2. [A2] M. ANDERSON, Short Geodesics and Gravitational Instantons (J. Diff. Geom., Vol. 31, 1990, pp. 265-275). Zbl0696.53029MR91b:53040
  3. [B] A. BESSE, Manifolds all of whose Geodesics are Closed, Springer Verlag, Berlin, Heidelberg, New York, 1978. Zbl0387.53010MR80c:53044
  4. [Be] G. BESSA, Differentiable Sphere Theorem for Ricci Curvature, preprint. 
  5. [BK] P. BUSER and H. KARCHER, Gromov's Almost Flat Manifolds (Asterisque, Vol. 81, 1981, pp. 1-148). Zbl0459.53031MR83m:53070
  6. [BT] Y. BURAGO and V. TOPONOGOV, On the Three Dimensional Riemannian Spaces with Bounded Curvature (Matematicheskie Zametki, Vol. 13, 1973, pp. 881-887). Zbl0277.53024
  7. [C] S. CHENG, Eigenvalue Comparison Theorems and its Geometric Applications (Math. Z., Vol. 143, 1975, pp. 289-297). Zbl0329.53035MR51 #14170
  8. [Ce] J. CERF, Sur les difféomorphismes de la sphère de dimension trois (Lecture Notes in Math. 53, Springer Verlag, Berlin, Heidelberg, New York, 1975). Zbl0164.24502MR37 #4824
  9. [CG] J. CHEEGER and M. GROMOV, Collapsing Riemannian Manifolds while Keeping their Curvature Bounded (J. Diff. Geom., Vol. 23, 1986, 309-346). Zbl0606.53028MR87k:53087
  10. [F] K. FUKAYA, A Boundary of the Set of the Riemannian Manifolds with Bounded Curvature and Diameter (J. Diff. Geom., Vol. 28, 1988, pp. 1-21). Zbl0652.53031MR89h:53090
  11. [Fr] M. FREEDMAN, The Topology of Four Dimensional Manifolds (J. Diff. Geom., Vol. 17, 1982, pp. 457-454). Zbl0528.57011MR84b:57006
  12. [FY1] K. FUKAYA and T. YAMAGUCHI, Almost Nonpositively Curved Manifolds, preprint. 
  13. [FY2] K. FUKAYA and T. YAMAGUCHI, The Fundamental Groups of Almost Nonnegatively Curved Manifolds, preprint. Zbl0770.53028
  14. [GS] R. GREENE and K. SHIOHAMA, Convex Functions on Complete Noncompact Manifolds : Differentiable Structures (Ann. Sci. Ec. Norm. Sup., Vol. 14, 1981, pp. 357-367). Zbl0488.57012MR83m:53057
  15. [GK] K. GROVE and H. KARCHER, How to Conjugate C1-Close Group Actions (Math. Z., Vol. 132, 1973, pp. 11-20). Zbl0245.57016MR50 #8575
  16. [GP1] K. GROVE and P. PETERSEN, A Pinching Theorem for Homotopy Spheres (Jour. AMS, Vol. 3, 1990, pp. 671-677). Zbl0717.53025MR91e:53040
  17. [GP2] K. GROVE and P. PETERSEN, Manifolds Near the Boundary of Existence (J. Diff. Geom., Vol. 33, 1991, pp. 379-394). Zbl0729.53045MR92a:53067
  18. [GrS] K. GROVE and K. SHIOHAMA, A Generalized Sphere Theorem (Ann. of Math., Vol. 106, 1977, pp. 201-211). Zbl0341.53029MR58 #18268
  19. [Ha] R. HAMILTON, Three Manifolds with Positive Ricci Curvature (J. Diff. Geom., Vol. 17, 1982, pp. 255-306). Zbl0504.53034MR84a:53050
  20. [He] J. HEMPEL, 3-Manifolds (Ann. of Math. Studies, Vol. 86, Princeton Univ. Press, 1976). Zbl0345.57001MR54 #3702
  21. [KM] M. KERVAIRE and J. MILNOR, Groups of Homotopy Spheres (Ann. of Math., Vol. 77, 1963, pp. 504-537). Zbl0115.40505MR26 #5584
  22. [M] S. MYERS, Riemannian Manifolds with Positive Mean Curvature (Duke Math. J., Vol. 8, 1941, pp. 401-404). Zbl0025.22704MR3,18fJFM67.0673.01
  23. [Mu] J. MUNKRES, Differentiable Isotopies on the 2-Sphere, (Notices AMS, Vol. 5, 1958, p. 582). 
  24. [O1] Y. OTSU, On Manifolds of Small Excess, preprint. Zbl0854.53041
  25. [O2] Y. OTSU, On Manifolds of Positive Ricci Curvature and Large Diameter (Math. Z., Vol. 206, 1991, pp. 255-264). Zbl0697.53042MR91m:53033
  26. [P] P. PETERSEN, V, Small Excess and Ricci Curvature, to appear in (J. Geom. Analysis). Zbl0742.53013
  27. [PSZ] P. PETERSEN, Z. SHEN and S. ZHU, Manifolds with Small Excess and Bounded Curvature, preprint. Zbl0791.53047
  28. [S] Z. SHEN, On Riemannian Manifolds with ε-Maximal Diameter and Bounded Curvature, preprint. 
  29. [Sm] S. SMALE, Generalized Poincaré Conjecture in Dimensions Greater than Four (Ann. of Math., Vol. 74, 1961, pp. 391-406). Zbl0099.39202MR25 #580
  30. [W] J.-Y. WU, Convergence of Riemannian 3-Manifolds Under Ricci Curvature Bounds, preprint. 
  31. [Y] T. YAMAGUCHI, Collapsing and Pinching Under Lower Curvature Bound (Annals of Math., Vol. 133, 1991, pp. 317-357). Zbl0737.53041MR92b:53067

NotesEmbed ?

top

You must be logged in to post comments.