An excess sphere theorem

Peter Petersen; Shun-Hui Zhu

Annales scientifiques de l'École Normale Supérieure (1993)

  • Volume: 26, Issue: 2, page 175-188
  • ISSN: 0012-9593

How to cite

top

Petersen, Peter, and Zhu, Shun-Hui. "An excess sphere theorem." Annales scientifiques de l'École Normale Supérieure 26.2 (1993): 175-188. <http://eudml.org/doc/82339>.

@article{Petersen1993,
author = {Petersen, Peter, Zhu, Shun-Hui},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {double soul theorem; bounded curvature; twisted sphere},
language = {eng},
number = {2},
pages = {175-188},
publisher = {Elsevier},
title = {An excess sphere theorem},
url = {http://eudml.org/doc/82339},
volume = {26},
year = {1993},
}

TY - JOUR
AU - Petersen, Peter
AU - Zhu, Shun-Hui
TI - An excess sphere theorem
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1993
PB - Elsevier
VL - 26
IS - 2
SP - 175
EP - 188
LA - eng
KW - double soul theorem; bounded curvature; twisted sphere
UR - http://eudml.org/doc/82339
ER -

References

top
  1. [A1] M. ANDERSON, Metrics of Positive Ricci Curvature with Large Diameter (Manu. Math., Vol. 68, 1990, pp. 405-415). Zbl0711.53036MR91g:53045
  2. [A2] M. ANDERSON, Short Geodesics and Gravitational Instantons (J. Diff. Geom., Vol. 31, 1990, pp. 265-275). Zbl0696.53029MR91b:53040
  3. [B] A. BESSE, Manifolds all of whose Geodesics are Closed, Springer Verlag, Berlin, Heidelberg, New York, 1978. Zbl0387.53010MR80c:53044
  4. [Be] G. BESSA, Differentiable Sphere Theorem for Ricci Curvature, preprint. 
  5. [BK] P. BUSER and H. KARCHER, Gromov's Almost Flat Manifolds (Asterisque, Vol. 81, 1981, pp. 1-148). Zbl0459.53031MR83m:53070
  6. [BT] Y. BURAGO and V. TOPONOGOV, On the Three Dimensional Riemannian Spaces with Bounded Curvature (Matematicheskie Zametki, Vol. 13, 1973, pp. 881-887). Zbl0277.53024
  7. [C] S. CHENG, Eigenvalue Comparison Theorems and its Geometric Applications (Math. Z., Vol. 143, 1975, pp. 289-297). Zbl0329.53035MR51 #14170
  8. [Ce] J. CERF, Sur les difféomorphismes de la sphère de dimension trois (Lecture Notes in Math. 53, Springer Verlag, Berlin, Heidelberg, New York, 1975). Zbl0164.24502MR37 #4824
  9. [CG] J. CHEEGER and M. GROMOV, Collapsing Riemannian Manifolds while Keeping their Curvature Bounded (J. Diff. Geom., Vol. 23, 1986, 309-346). Zbl0606.53028MR87k:53087
  10. [F] K. FUKAYA, A Boundary of the Set of the Riemannian Manifolds with Bounded Curvature and Diameter (J. Diff. Geom., Vol. 28, 1988, pp. 1-21). Zbl0652.53031MR89h:53090
  11. [Fr] M. FREEDMAN, The Topology of Four Dimensional Manifolds (J. Diff. Geom., Vol. 17, 1982, pp. 457-454). Zbl0528.57011MR84b:57006
  12. [FY1] K. FUKAYA and T. YAMAGUCHI, Almost Nonpositively Curved Manifolds, preprint. 
  13. [FY2] K. FUKAYA and T. YAMAGUCHI, The Fundamental Groups of Almost Nonnegatively Curved Manifolds, preprint. Zbl0770.53028
  14. [GS] R. GREENE and K. SHIOHAMA, Convex Functions on Complete Noncompact Manifolds : Differentiable Structures (Ann. Sci. Ec. Norm. Sup., Vol. 14, 1981, pp. 357-367). Zbl0488.57012MR83m:53057
  15. [GK] K. GROVE and H. KARCHER, How to Conjugate C1-Close Group Actions (Math. Z., Vol. 132, 1973, pp. 11-20). Zbl0245.57016MR50 #8575
  16. [GP1] K. GROVE and P. PETERSEN, A Pinching Theorem for Homotopy Spheres (Jour. AMS, Vol. 3, 1990, pp. 671-677). Zbl0717.53025MR91e:53040
  17. [GP2] K. GROVE and P. PETERSEN, Manifolds Near the Boundary of Existence (J. Diff. Geom., Vol. 33, 1991, pp. 379-394). Zbl0729.53045MR92a:53067
  18. [GrS] K. GROVE and K. SHIOHAMA, A Generalized Sphere Theorem (Ann. of Math., Vol. 106, 1977, pp. 201-211). Zbl0341.53029MR58 #18268
  19. [Ha] R. HAMILTON, Three Manifolds with Positive Ricci Curvature (J. Diff. Geom., Vol. 17, 1982, pp. 255-306). Zbl0504.53034MR84a:53050
  20. [He] J. HEMPEL, 3-Manifolds (Ann. of Math. Studies, Vol. 86, Princeton Univ. Press, 1976). Zbl0345.57001MR54 #3702
  21. [KM] M. KERVAIRE and J. MILNOR, Groups of Homotopy Spheres (Ann. of Math., Vol. 77, 1963, pp. 504-537). Zbl0115.40505MR26 #5584
  22. [M] S. MYERS, Riemannian Manifolds with Positive Mean Curvature (Duke Math. J., Vol. 8, 1941, pp. 401-404). Zbl0025.22704MR3,18fJFM67.0673.01
  23. [Mu] J. MUNKRES, Differentiable Isotopies on the 2-Sphere, (Notices AMS, Vol. 5, 1958, p. 582). 
  24. [O1] Y. OTSU, On Manifolds of Small Excess, preprint. Zbl0854.53041
  25. [O2] Y. OTSU, On Manifolds of Positive Ricci Curvature and Large Diameter (Math. Z., Vol. 206, 1991, pp. 255-264). Zbl0697.53042MR91m:53033
  26. [P] P. PETERSEN, V, Small Excess and Ricci Curvature, to appear in (J. Geom. Analysis). Zbl0742.53013
  27. [PSZ] P. PETERSEN, Z. SHEN and S. ZHU, Manifolds with Small Excess and Bounded Curvature, preprint. Zbl0791.53047
  28. [S] Z. SHEN, On Riemannian Manifolds with ε-Maximal Diameter and Bounded Curvature, preprint. 
  29. [Sm] S. SMALE, Generalized Poincaré Conjecture in Dimensions Greater than Four (Ann. of Math., Vol. 74, 1961, pp. 391-406). Zbl0099.39202MR25 #580
  30. [W] J.-Y. WU, Convergence of Riemannian 3-Manifolds Under Ricci Curvature Bounds, preprint. 
  31. [Y] T. YAMAGUCHI, Collapsing and Pinching Under Lower Curvature Bound (Annals of Math., Vol. 133, 1991, pp. 317-357). Zbl0737.53041MR92b:53067

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.