Symplectic geometry on moduli spaces of stable pairs

Francesco Bottacin

Annales scientifiques de l'École Normale Supérieure (1995)

  • Volume: 28, Issue: 4, page 391-433
  • ISSN: 0012-9593

How to cite

top

Bottacin, Francesco. "Symplectic geometry on moduli spaces of stable pairs." Annales scientifiques de l'École Normale Supérieure 28.4 (1995): 391-433. <http://eudml.org/doc/82388>.

@article{Bottacin1995,
author = {Bottacin, Francesco},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {symplectic structure of moduli space; Poisson structure of moduli space; moduli space of stable pairs; Higgs pairs; Hitchin map},
language = {eng},
number = {4},
pages = {391-433},
publisher = {Elsevier},
title = {Symplectic geometry on moduli spaces of stable pairs},
url = {http://eudml.org/doc/82388},
volume = {28},
year = {1995},
}

TY - JOUR
AU - Bottacin, Francesco
TI - Symplectic geometry on moduli spaces of stable pairs
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1995
PB - Elsevier
VL - 28
IS - 4
SP - 391
EP - 433
LA - eng
KW - symplectic structure of moduli space; Poisson structure of moduli space; moduli space of stable pairs; Higgs pairs; Hitchin map
UR - http://eudml.org/doc/82388
ER -

References

top
  1. [B1] A. BEAUVILLE, Jacobiennes des courbes spectrales et systèmes hamiltoniens complètement intégrables (Acta Math., Vol. 164, 1990, pp. 211-235). Zbl0712.58031MR91m:14044
  2. [B2] A. BEAUVILLE, Systèmes hamiltoniens complètement intégrables associés aux surfaces K3 (Symp. Math., Vol. 32, 1992, pp. 25-31). Zbl0827.58022MR95c:14052
  3. [BNR] A. BEAUVILLE, M. S. NARASIMHAN and S. RAMANAN, Spectral curves and the generalized theta divisor (J. Reine Angew. Math., Vol. 398, 1989, pp. 169-179). Zbl0666.14015MR91c:14040
  4. [BR] I. BISWAS and S. RAMANAN, An infinitesimal study of the moduli of Hitchin pairs (J. London Math. Soc., Vol. 49, 1994, pp. 219-231). Zbl0819.58007MR94k:14006
  5. [EGA] A. GROTHENDIECK, Eléments de Géométrie Algébrique (Publ. Math. IHES, 1965-1967). 
  6. [Ha1] R. HARTSHORNE, Residues and Duality (Lecture Notes in Math., Vol. 20, Springer-Verlag, Heidelberg, 1966). Zbl0212.26101MR36 #5145
  7. [Ha2] R. HARTSHORNE, Algebraic Geometry, Berlin-Heidelberg-New York, 1977. Zbl0367.14001MR57 #3116
  8. [H] N. HITCHIN, Stable bundles and integrable systems (Duke Math. J., Vol. 54, 1987, pp. 91-114). Zbl0627.14024MR88i:58068
  9. [M] D. MUMFORD, Abelian Varieties, Tata Institute of Fundamental Research, Bombay, Oxford University Press, 1970. Zbl0223.14022MR44 #219
  10. [Ma] E. MARKMAN, Spectral Curves and Integrable Systems (Comp. Math., Vol. 93, 1994, pp. 255-290). Zbl0824.14013MR95k:14013
  11. [MS] V. B. MEHTA and C. S. SESHADRI, Moduli of Vector Bundles on Curves with Parabolic Structures (Math. Ann., Vol. 248, 1980, pp. 205-239). Zbl0454.14006MR81i:14010
  12. [Ne] P. E. NEWSTEAD, Introduction to Moduli Problems and Orbit Spaces, Tata Institute of Fundamental Research and Springer-Verlag, Berlin-Heidelberg-New York, 1978. Zbl0411.14003MR81k:14002
  13. [N] N. NITSURE, Moduli space of semistable pairs on a curve (Proc. London Math. Soc., Vol. 62, 1991, pp. 275-300). Zbl0733.14005MR92a:14010
  14. [S] C. S. SESHADRI, Fibrés Vectoriels sur les Courbes Algébriques (Astérisque, Vol. 96, 1982). Zbl0517.14008MR85b:14023
  15. [Si] C. SIMPSON, Moduli of representations of the fundamental group of a smooth projective variety I, II, Toulouse Prépublication, Vol. 17. 
  16. [W] A. WEINSTEIN, The local structure of Poisson manifolds (J. Diff. Geom., Vol. 18, 1983, pp. 523-557). Zbl0524.58011MR86i:58059
  17. [We] G. E. WELTERS, Polarized abelian varieties and the heat equations (Comp. Math., Vol. 49, 1983, pp. 173-194). Zbl0576.14042MR85f:14045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.