Verma module annihilators for quantized enveloping algebras
Annales scientifiques de l'École Normale Supérieure (1995)
- Volume: 28, Issue: 4, page 493-526
- ISSN: 0012-9593
Access Full Article
topHow to cite
topJoseph, Anthony, and Letzter, Gail. "Verma module annihilators for quantized enveloping algebras." Annales scientifiques de l'École Normale Supérieure 28.4 (1995): 493-526. <http://eudml.org/doc/82392>.
@article{Joseph1995,
author = {Joseph, Anthony, Letzter, Gail},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {quantized enveloped algebra; Verma module; annihilator; separation of variables},
language = {eng},
number = {4},
pages = {493-526},
publisher = {Elsevier},
title = {Verma module annihilators for quantized enveloping algebras},
url = {http://eudml.org/doc/82392},
volume = {28},
year = {1995},
}
TY - JOUR
AU - Joseph, Anthony
AU - Letzter, Gail
TI - Verma module annihilators for quantized enveloping algebras
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1995
PB - Elsevier
VL - 28
IS - 4
SP - 493
EP - 526
LA - eng
KW - quantized enveloped algebra; Verma module; annihilator; separation of variables
UR - http://eudml.org/doc/82392
ER -
References
top- [B] W. BORHO, On the Joseph-Small additivity principle for Goldie ranks (Compos. Math., Vol. 43, 1982, pp. 3-29). Zbl0502.17007MR84a:17007
- [BK] W. BORHO and H. KRAFT, Über die Gelfand-Kirillov-Dimension (Math. Ann., Vol. 220, 1976, pp. 1-24). Zbl0306.17005MR54 #367
- [Bo] N. BOURBAKI, Commutative algebra, Springer-Verlag, Berlin, 1980.
- [D] J. DIXMIER, Algèbres enveloppantes, cahiers scientifiques no. 37, Gauthier-Villars, Paris, 1974. Zbl0308.17007MR58 #16803a
- [DeC-K] C. DE CONCINI and V. KAC, Representations of quantum groups at roots of 1 (In Progress in Math., Vol. 92 (Ed. A. Connes et al.) Birkhauser, Boston, 1990, pp. 471-506). Zbl0738.17008MR92g:17012
- [Dr] V. G. DRINFELD, On some unsolved problems in quantum group theory (In Quantum Groups, Ed. P.P. Kulish, LN 1510 Springer-Verlag, Berlin, 1992). Zbl0765.17014MR94a:17006
- [H] I. N. HERSTEIN, Topics in Ring Theory, Chicago Press, Chicago, 1969. Zbl0232.16001MR42 #6018
- [He] W. H. HESSELINK, Characters of the Nullcone (Math. Ann., Vol. 252, 1980, pp. 179-182). Zbl0447.17006MR82c:17004
- [J1] A. JOSEPH, The primitive spectrum of an enveloping algebra (Astérisque, Vol. 173-174, 1989, pp. 13-53). Zbl0714.17011MR91b:17012
- [J2] A. JOSEPH, Enveloping algebras : Problems old and new. (In Progress in Math., Vol. 123, Birkhäuser, Boston, 1994, pp. 385-413). Zbl0847.17007MR96e:17022
- [J3] A. JOSEPH, A generalization of the Gelfand-Kirillov conjecture (Amer. J. Math., Vol. 99, 1977, pp. 1151-1165). Zbl0378.17005MR57 #391
- [Ja] J.-C. JANTZEN, Moduln mit einem höchsten Gewicht, LN 750, Springer-Verlag, Heidelberg, 1979. Zbl0426.17001MR81m:17011
- [JL1] A. JOSEPH and G. LETZTER, Local finiteness of the adjoint action for quantized enveloping algebras (J. Algebra, Vol. 153, 1992, pp. 289-318). Zbl0779.17012MR94b:17023
- [JL2] A. JOSEPH and G. LETZTER, Separation of variables for quantized enveloping algebras. Zbl0811.17007
- [K] B. KOSTANT, On the existence and irreducibility of certain series of representations (Bull. Amer. Math. Soc., Vol. 75, 1969, pp. 627-642). Zbl0229.22026MR39 #7031
- [KL] G. B. KRAUSE and T. H. LENAGEN, Growth of algebras and Gelfand-Kirillov dimension (Research Notes in Math., Vol. 116, Pitman, London, 1985). Zbl0564.16001MR86g:16001
- [L] G. LUSZTIG, Quantum deformations of certain simple modules over enveloping algebras (Adv. Math., Vol. 70, 1988, pp. 237-249). Zbl0651.17007MR89k:17029
- [M] J. C. MCCONNELL, Quantum groups, filtered rings and Gelfand-Kirillov dimension. (In Lecture Notes in Math., Vol. 1448, Springer, Berlin, 1991, pp. 139-149). Zbl0717.17016MR91j:17020
- [PRV] K. R. PARTHASARATHY, R. RANGA RAO and V. S. VARADERAJAN, Representations of complex semi-simple Lie groups and Lie algebras (Annals of Math., Vol. 85, 1967, pp. 383-429). Zbl0177.18004MR37 #1526
- [R1] M. ROSSO, Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra (Comm. Math. Phys., Vol. 117, 1988, pp. 581-593). Zbl0651.17008MR90c:17019
- [R2] M. ROSSO, Analogues de la forme de Killing et du théorème de Harish-Chandra pour les groupes quantiques (Ann. Sc. Ec. Norm. Sup., Vol. 23, 1990, pp. 445-467). Zbl0721.17012MR93e:17026
- [S] R. STEINBERG, On a theorem of Pittie (Topology, Vol. 14, 1975, pp. 173-7). Zbl0318.22010MR51 #9101
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.