A Lefschetz trace formula for equivariant cohomology

Minhyong Kim

Annales scientifiques de l'École Normale Supérieure (1995)

  • Volume: 28, Issue: 6, page 669-688
  • ISSN: 0012-9593

How to cite

top

Kim, Minhyong. "A Lefschetz trace formula for equivariant cohomology." Annales scientifiques de l'École Normale Supérieure 28.6 (1995): 669-688. <http://eudml.org/doc/82398>.

@article{Kim1995,
author = {Kim, Minhyong},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {equivariant cohomology; compact manifold; Lefschetz number; fixed point},
language = {eng},
number = {6},
pages = {669-688},
publisher = {Elsevier},
title = {A Lefschetz trace formula for equivariant cohomology},
url = {http://eudml.org/doc/82398},
volume = {28},
year = {1995},
}

TY - JOUR
AU - Kim, Minhyong
TI - A Lefschetz trace formula for equivariant cohomology
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1995
PB - Elsevier
VL - 28
IS - 6
SP - 669
EP - 688
LA - eng
KW - equivariant cohomology; compact manifold; Lefschetz number; fixed point
UR - http://eudml.org/doc/82398
ER -

References

top
  1. [A-M] M. ARTIN and B. MAZUR, On periodic points (Ann. of Math., (2), Vol. 81, 1965, pp. 82-99). Zbl0127.13401MR31 #754
  2. [B1] K. BEHREND, The Lefschetz trace formula for algebraic stacks (Invent. Math., Vol. 111, 1993, pp. 1-33). Zbl0792.14005MR94d:14023
  3. [B2] A. BOREL, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes des groupes de Lie compact (Ann. of Math., Vol. 57, 1953, pp. 115-207). Zbl0052.40001MR14,490e
  4. [G-Z] P. GABRIEL and M. ZISMAN, Calculus of fractions and homotopy theory (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag, Berlin-Heidelberg-New York, 1967). Zbl0186.56802MR35 #1019
  5. [G] H. GILLET, Intersection theory on algebraic stacks and Q-varieties (J. Pure Appl. Algebra, Vol. 34, 1984, pp. 193-240). Zbl0607.14004MR86b:14006
  6. [L1] S. LANG, Algebra, 2nd. edition, Addison-Wesley, Reading, Massachusetts, 1984. 
  7. [L2] S. LANG, Algebraic groups over finite fields (Amer. J. Math., Vol. 78, no. 3, 1956, pp. 555-563). Zbl0073.37901MR19,174a
  8. [M] S. MACLANE, Categories for the working mathematician (Graduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg-Berlin, 1971). Zbl0705.18001MR50 #7275
  9. [S] G. SEGAL, Classifying spaces and spectral sequences (Publ. Math. I.H.E.S., Vol. 34, 1966, pp. 105-112). Zbl0199.26404MR38 #718

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.