The homology of special linear groups over polynomial rings

Kevin P. Knudson

Annales scientifiques de l'École Normale Supérieure (1997)

  • Volume: 30, Issue: 3, page 385-416
  • ISSN: 0012-9593

How to cite

top

Knudson, Kevin P.. "The homology of special linear groups over polynomial rings." Annales scientifiques de l'École Normale Supérieure 30.3 (1997): 385-416. <http://eudml.org/doc/82437>.

@article{Knudson1997,
author = {Knudson, Kevin P.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {homology; buildings; spectral sequences; differentials; special linear groups},
language = {eng},
number = {3},
pages = {385-416},
publisher = {Elsevier},
title = {The homology of special linear groups over polynomial rings},
url = {http://eudml.org/doc/82437},
volume = {30},
year = {1997},
}

TY - JOUR
AU - Knudson, Kevin P.
TI - The homology of special linear groups over polynomial rings
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1997
PB - Elsevier
VL - 30
IS - 3
SP - 385
EP - 416
LA - eng
KW - homology; buildings; spectral sequences; differentials; special linear groups
UR - http://eudml.org/doc/82437
ER -

References

top
  1. [1] A. BOREL, Stable real cohomology of arithmetic groups (Ann. Scient. Éc. Norm. Sup. (4), Vol. 7, 1974, pp. 235-272). Zbl0316.57026MR52 #8338
  2. [2] A. BOREL, Stable real cohomology of arithmetic groups II (Prog. Math., Vol. 14, 1981, pp. 21-55, Birkhäuser-Boston). Zbl0483.57026MR83h:22023
  3. [3] A. BOREL and J. YANG, The rank conjecture for number fields (Mathematical Research Letters, Vol. 1, 1994, pp. 689-699). Zbl0841.19002MR95k:11077
  4. [4] K. BROWN, Buildings, Springer-Verlag, Berlin, Heidelberg, New York, 1989. Zbl0715.20017MR90e:20001
  5. [5] K. BROWN, Cohomology of Groups, Springer-Verlag, Berlin, Heidelberg, New York, 1982. Zbl0584.20036MR83k:20002
  6. [6] F. BRUHAT and J. TITS, Groupes réductifs sur un corps local I : Données radicielles valuées (Publ. IHES, Vol. 41, 1972, pp. 5-252). Zbl0254.14017MR48 #6265
  7. [7] R. CHARNEY, Homology stability for GLn of a Dedekind domain (Invent. Math., Vol. 56, 1980, pp. 1-17). Zbl0427.18013MR81h:18010
  8. [8] J. DUPONT and H. SAH, Scissors congruences II (J. Pure and Appl. Algebra, Vol. 25, 1982, pp. 159-195). Zbl0496.52004MR84b:53062b
  9. [9] J. HUMPHREYS, Linear Algebraic Groups, Springer-Verlag, Berlin, Heidelberg, New York, 1981. Zbl0471.20029
  10. [10] K. HUTCHINSON, A new approach to Matsumoto's Theorem (K-Theory, Vol. 4, 1990, pp. 181-200). Zbl0725.19001MR91j:19006
  11. [11] W. VAN DER KALLEN, Homology stability for linear groups (Invent. Math., Vol. 60, 1980, pp. 269-295). Zbl0415.18012MR82c:18011
  12. [12] K. KNUDSON, The homology of SL2(F[t,t-1]) (J. Alg., Vol. 180, 1996, pp. 87-101). Zbl0846.20045MR97d:20053
  13. [13] H. NAGAO, On GL(2, K[x]) (J. Poly. Osaka Univ., Vol. 10, 1959, pp. 117-121). Zbl0092.02504MR22 #5684
  14. [14] D. QUILLEN, On the cohomology and K-theory of the general linear groups over a finite field (Ann. Math., Vol. 96, 1972, pp. 552-586). Zbl0249.18022MR47 #3565
  15. [15] D. QUILLEN, Higher algebraic K-theory : I, in K-Theory, H. Bass, ed., Springer Lecture Notes in Mathematics, Vol. 341, 1976, pp. 85-147. Zbl0292.18004MR49 #2895
  16. [16] J-P. SERRE, Trees, Springer-Verlag, Berlin, Heidelberg, New York, 1980. Zbl0548.20018MR82c:20083
  17. [17] C. SOULÉ, Chevalley groups over polynomial rings, in Homological Group Theory (C.T.C. Wall, ed.) (London Math. Soc. Lecture Notes, Vol. 36, Cambridge University Press, Cambridge, 1979, pp. 359-367). Zbl0437.20036MR81g:20080
  18. [18] C. SOULÉ, The cohomology of SL3 (ℤ) (Topology, Vol. 17, 1978, pp. 1-22). Zbl0382.57026MR57 #9908
  19. [19] A. SUSLIN, Homology of GLn, characteristic classes and Milnor K-theory (Springer Lecture Notes in Mathematics, Vol. 1046, 1984, pp. 357-375). Zbl0528.18007MR86f:11090a
  20. [20] A. SUSLIN, K3 of a field and Bloch's group (Proceedings of the Steklov Institute of Mathematics, 1991, Issue 4). 
  21. [21] A. SUSLIN, On the structure of the special linear group over polynomial rings (Math. USSR Izvestija, Vol. 11, 1977, pp. 221-238). Zbl0378.13002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.