Capelli identities for Lie superalgebras
Annales scientifiques de l'École Normale Supérieure (1997)
- Volume: 30, Issue: 6, page 847-872
- ISSN: 0012-9593
Access Full Article
topHow to cite
topNazarov, Maxim. "Capelli identities for Lie superalgebras." Annales scientifiques de l'École Normale Supérieure 30.6 (1997): 847-872. <http://eudml.org/doc/82452>.
@article{Nazarov1997,
author = {Nazarov, Maxim},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Capelli identities; universal enveloping algebras; simple Lie superalgebras; invariant theory of Lie superalgebras},
language = {eng},
number = {6},
pages = {847-872},
publisher = {Elsevier},
title = {Capelli identities for Lie superalgebras},
url = {http://eudml.org/doc/82452},
volume = {30},
year = {1997},
}
TY - JOUR
AU - Nazarov, Maxim
TI - Capelli identities for Lie superalgebras
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1997
PB - Elsevier
VL - 30
IS - 6
SP - 847
EP - 872
LA - eng
KW - Capelli identities; universal enveloping algebras; simple Lie superalgebras; invariant theory of Lie superalgebras
UR - http://eudml.org/doc/82452
ER -
References
top- [1] A. CAPELLI, Sur les opérations dans la théorie des formes algébriques (Math. Ann., Vol. 37, 1890, pp. 1-37). Zbl22.0137.01JFM22.0137.01
- [2] H. WEYL, Classical groups, their invariants and representations (Princeton University Press, Princeton, 1946). Zbl1024.20502
- [3] S. SAHI, The spectrum of certain invariant differential operators associated to a Hermitian symmetric space, in (“Lie Theory and Geometry”, Progress in Math., Vol. 123, Birkhäuser, Boston, 1994, pp. 569-576). Zbl0851.22010MR96d:43013
- [4] A. OKOUNKOV, Quantum immanants and higher Capelli identities (Transformation Groups, Vol. 1, 1996, pp. 99-126). Zbl0864.17014MR97j:17010
- [5] M. NAZAROV, Yangians and Capelli identities (Amer. Math. Soc. Transl., Vol. 181, 1997, pp. 139-164). Zbl0927.17007MR99g:17033
- [6] V. KAC, Lie superalgebras (Adv. Math., Vol. 26, 1977, pp. 8-96). Zbl0366.17012MR58 #5803
- [7] V. IVANOV, Dimensions of skew shifted Young diagrams and projective characters of the infinite symmetric group (Zapiski Nauchn. Sem. POMI, Vol. 232, 1997, pp. 116-136 ; English transl. in J. Math. Sciences). Zbl0960.20009
- [8] A. BORODIN and N. ROZHKOVSKAYA, On a superanalogue of the Schur-Weyl duality, Preprint ESI, No. 246, 1995, pp. 1-15).
- [9] A. SERGEEV, The tensor algebra of the identity representations as a module over the Lie superalgebras GL(n, m) and Q(n) (Math. Sbornik, Vol. 51, 1985, pp. 419-427). Zbl0573.17002
- [10] I. CHEREDNIK, On special bases of irreducible finite-dimensional representations of the degenerate affine Hecke algebra (Funct. Anal. Appl., Vol. 20, 1986, pp. 87-89). Zbl0599.20050MR87m:22031
- [11] M. NAZAROV, Young's symmetrizers for projective representations of the symmetric group (Adv. Math., Vol. 127, 1997, pp. 190-257). Zbl0930.20011MR98m:20019
- [12] A. OKOUNKOV, Young basis, Wick formula, and higher Capelli identities (Int. Math. Research Notices, 1996, pp. 817-839). Zbl0878.17008MR98b:17009
- [13] A. MOLEV, Factorial supersymmetric Schur functions and super Capelli identities, in (“A. A. KIRILLOV Seminar on Representation Theory”, AMS, Providence, 1997). Zbl0955.05112
- [14] M. JIMBO, A. KUNIBA, T. MIWA and M. OKADO, The A(1)n face models (Comm. Math. Phys., Vol. 119, 1988, pp. 543-565). Zbl0667.17008MR90h:17044
- [15] A. YOUNG, On quantitative substitutional analysis I and II (Proc. London Math. Soc., Vol. 33, 1901, pp. 97-146 ; Vol. 34, 1902, pp. 361-397). JFM32.0157.02
- [16] A. JUCYS, Symmetric polynomials and the center of the symmetric group ring (Rep. Math. Phys., Vol. 5, 1974, pp. 107-112). Zbl0288.20014MR54 #7597
- [17] A. SERGEEV, The centre of enveloping algebra of the Lie superalgebra Q(n) (Lett. Math. Phys., Vol. 7, 1983, pp. 177-179). Zbl0539.17003MR85i:17004
- [18] R. HOWE, Remarks on classical invariant theory (Trans. Amer. Math. Soc., Vol. 313, 1989, pp. 539-570). Zbl0674.15021MR90h:22015a
- [19] M. DUFLO, Sur la classification des idéaux primitifs dans l'algèbre enveloppante d'une algèbre de Lie semi-simple (Ann. of Math., Vol. 105, 1977, pp. 107-120). Zbl0346.17011MR55 #3013
- [20] I. MACDONALD, Symmetric functions and Hall polynomials (Clarendon Press, Oxford, 1979). Zbl0487.20007MR84g:05003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.