Sur l’algébrisation des tissus de codimension n de 2 n

Alain Hénaut

Annales scientifiques de l'École Normale Supérieure (1998)

  • Volume: 31, Issue: 1, page 131-143
  • ISSN: 0012-9593

How to cite

top

Hénaut, Alain. "Sur l’algébrisation des tissus de codimension $n$ de $\mathbb {C}^{2n}$." Annales scientifiques de l'École Normale Supérieure 31.1 (1998): 131-143. <http://eudml.org/doc/82453>.

@article{Hénaut1998,
author = {Hénaut, Alain},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {web; rank problem; algebraizability},
language = {fre},
number = {1},
pages = {131-143},
publisher = {Elsevier},
title = {Sur l’algébrisation des tissus de codimension $n$ de $\mathbb \{C\}^\{2n\}$},
url = {http://eudml.org/doc/82453},
volume = {31},
year = {1998},
}

TY - JOUR
AU - Hénaut, Alain
TI - Sur l’algébrisation des tissus de codimension $n$ de $\mathbb {C}^{2n}$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1998
PB - Elsevier
VL - 31
IS - 1
SP - 131
EP - 143
LA - fre
KW - web; rank problem; algebraizability
UR - http://eudml.org/doc/82453
ER -

References

top
  1. [B-B] W. BLASCHKE et G. BOL, Geometrie der Gewebe, Springer, Berlin, 1938. Zbl0020.06701JFM64.0727.03
  2. [B] G. BOL, Über ein bemerkenswertes Fünfgewebe in der Ebene, (Abh. Hamburg, Vol. 11, 1936, p. 387-393). Zbl0014.23005
  3. [C] S.S. CHERN, Web Geometry, (Bull. Amer. Math. Soc., Vol. 6, 1982, p. 1-8). Zbl0483.53013MR84g:53024
  4. [C-G1] S.S. CHERN et P.A. GRIFFITHS, Abel's Theorem and Webs, (Jahresber. Deutsch. Math.-Verein., Vol. 80, 1978, p. 13-110) and Corrections and Addenda to Our Paper : Abel's Theorem and Webs, (Jahresber. Deutsch. Math.-Verein., Vol. 83, 1981, p. 78-83). Zbl0474.14003MR80b:53008
  5. [C-G2] S.S. CHERN et P.A. GRIFFITHS, An Inequality for the Rank of a Web and Webs of Maximum Rank, (Ann. Scuola Norm. Sup. Pisa, Vol. 5, 1978, p. 539-557). Zbl0402.57001MR80b:53009
  6. [Go1] V.V. GOLDBERG, Tissus de codimension r et de r-rang maximum, (C. R. Acad. Sc. Paris, Vol. 297, 1983, p. 339-342). Zbl0539.53012MR85f:53020
  7. [Go2] V.V. GOLDBERG, 4-tissus isoclines exceptionnels de codimension deux et de 2-rang maximal, (C. R. Acad. Sc. Paris, Vol. 301, 1985, p. 593-596). Zbl0579.53015MR87b:53025
  8. [Go3] V.V. GOLDBERG, Isoclinic webs W(4, 2, 2) of maximum 2-rank, in Differential Geometry - Peñ;iscola 1985, (Lect. Notes Math., Vol. 1209, Springer, Berlin, 1986, p. 168-183). Zbl0607.53008MR88h:53021
  9. [Go4] V.V. GOLDBERG, Nonisoclonic 2-codimensional 4-webs of maximum 2-rank, (Proc. Amer. Math. Soc., Vol. 100, 1987, p. 701-708). Zbl0628.53018MR88i:53037
  10. [Go] V.V. GOLDBERG, Theory of Multicodimensional (n + 1)-Webs, Kluwer, Dordrecht, 1988. Zbl0668.53001MR90h:53021
  11. [G1] P.A. GRIFFITHS, Variations on a Theorem of Abel, (Invent. Math., Vol. 35, 1976, p. 321-390). Zbl0339.14003MR55 #8036
  12. [G2] P.A. GRIFFITHS, On Abel's Differential Equations, Algebraic Geometry, The Johns Hopkins Centennial Lectures, Ed. J.-I. Igusa, 1977, p. 26-51. Zbl0422.14016MR58 #655
  13. [G-H] P.A. GRIFFITHS et J. HARRIS, Principles of Algebraic Geometry, John Wiley and Sons, New York, 1978. Zbl0408.14001MR80b:14001
  14. [H1] A. HÉNAUT, Caractérisation des tissus de ℂ² dont le rang est maximal et qui sont linéarisables, (Compositio Math., Vol. 94, 1994, p. 247-268). Zbl0877.53013MR96a:32057
  15. [H2] A. HÉNAUT, Systèmes différentiels, nombre de Castelnuovo et rang des tissus de ℂn, (Publ. R.I.M.S., Kyoto Univ., Vol. 31, (1995), p. 703-720). Zbl0911.53008MR97b:32042
  16. [L] J.B. LITTLE, On Webs of Maximum Rank, (Geom. Dedicata, Vol. 31, 1989, p. 19-35). Zbl0677.53017MR90g:53023
  17. [P] H. POINCARÉ, Sur les surfaces de translation et les fonctions abéliennes, (Bull. Soc. Math., France, Vol. 29, 1901, p. 61-86.) Zbl32.0459.04JFM32.0459.04

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.