Systèmes bihamiltoniens en dimension impaire

Marie-Hélène Rigal

Annales scientifiques de l'École Normale Supérieure (1998)

  • Volume: 31, Issue: 3, page 345-359
  • ISSN: 0012-9593

How to cite

top

Rigal, Marie-Hélène. "Systèmes bihamiltoniens en dimension impaire." Annales scientifiques de l'École Normale Supérieure 31.3 (1998): 345-359. <http://eudml.org/doc/82463>.

@article{Rigal1998,
author = {Rigal, Marie-Hélène},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {closed and odd-dimensional manifold ; foliation; leaves; affine structure},
language = {fre},
number = {3},
pages = {345-359},
publisher = {Elsevier},
title = {Systèmes bihamiltoniens en dimension impaire},
url = {http://eudml.org/doc/82463},
volume = {31},
year = {1998},
}

TY - JOUR
AU - Rigal, Marie-Hélène
TI - Systèmes bihamiltoniens en dimension impaire
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1998
PB - Elsevier
VL - 31
IS - 3
SP - 345
EP - 359
LA - fre
KW - closed and odd-dimensional manifold ; foliation; leaves; affine structure
UR - http://eudml.org/doc/82463
ER -

References

top
  1. [A] V. ARNOLD, Méthodes mathématiques de la mécanique classique, edit. Mir, 1976. Zbl0385.70001MR57 #14033a
  2. [BGh] M. BRUNELLA et E. GHYS, Umbilical foliations and transversely holomorphic flows, (Journal of Diff. Geom., vol. 41, 1995, p. 1-19). Zbl0824.53027MR95k:53039
  3. [Ca1] Y. CARRIERE, Flots riemanniens, (Astérisque, vol. 116, 1984, p. 31-52). Zbl0548.58033MR86m:58125a
  4. [Ca2] Y. CARRIERE, Feuilletages riemanniens à croissance polynômiale, (Comm. Math. Helv., vol. 63, 1988, p. 1-20). Zbl0661.53022MR89a:57033
  5. [D] P. A. DAMIANOU, Masters symmetries and R-matrices for the Toda lattice, (Letters in Math. Physics, vol. 20, 1990, p. 101-112). Zbl0714.70014MR92b:58086
  6. [GZ] I. M. GELFAND et I. ZAKHAREVITCH, Webs, Veronese curves and bihamiltonian systems, (Journ. Funct. Anal, vol. 99, 1991, p. 150-178). Zbl0739.58021
  7. [Gh] E. GHYS, Flots transversalement affines et tissus feuilletés, (Mémoires de la Société mathématique de France, vol. 46, p. 123-150, 1991). Zbl0761.57016MR92i:57026
  8. [GhS] E. GHYS et V. SERGIESCU, Stabilité et conjugaison différentiable pour certains feuilletages, (Topology, vol. 19, 1979, p. 179-197). Zbl0478.57017MR81k:57022
  9. [He] G. HECTOR, Feuilletages en cylindres, (Lecture Notes, vol. 597, 1976, p. 252-271). Zbl0361.57020MR56 #9547
  10. [HeH] G. HECTOR et U. HIRSH, Introduction to the Geometry of foliations, (Aspects of Mathematics). 
  11. [LM] P. LIBERMANN et C. M. MARLE, Géométrie symplectique, bases théoriques de la mécanique, vol. 1-4, (Publ. Univ. Paris 7). Zbl0643.53001
  12. [Li] E. LIMA, Commuting vector fields on S3, (Ann. of Math., vol. 81, 1965, p. 70-81). Zbl0137.17801MR30 #1517
  13. [MM] F. MAGRI et C. MOROSI, A geometrical characterisation of integrable hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, (Publ. Dept. Math. Milan, 1984). 
  14. [Ma] J. MARTINET, Normalisation des champs de vecteurs holomorphes (d'après Brujno) (Séminaire Bourbaki, vol. 564). Zbl0481.34013
  15. [Mo] P. MOLINO, Riemannian foliations, (Progress in Math., Birkhaüser, 1988). Zbl0633.53001MR89b:53054
  16. [NY] T. NAGANO et K. YAGI, The affine structures on the real two torus, (Osaks J. Math., vol. 11, 1974, p. 181-210). Zbl0285.53030MR51 #14086
  17. [R1] M. H. RIGAL, Géométrie globale des systèmes bihamiltoniens en dimension impaire, (Thèse Univ-Montpellier II, 1996). 
  18. [R2] M. H. RIGAL, Rigidité des feuilletages transversalement conformément parallélisables, (prépublication ENS-Lyon, vol. 199, 1996 à paraître au Tohoku Mathematical Journal). 
  19. [Ro] H. ROSENBERG, Foliations by planes, (Topology, vol. 7, 1968, p. 131-138). Zbl0157.30504MR37 #3595
  20. [S] H. J. SÜSSMANN, A generalization of the closed subgroup theorem to quotient of arbitrary manifolds, (Jour. Diff. Geom, vol. 101, 1975, p. 151-166). Zbl0342.58004MR54 #13964
  21. [Ti] D. TISCHLER, On fibering certain foliated manifolds over S1, (Topology, vol. 9, 1970, p. 153-154). Zbl0177.52103MR41 #1069
  22. [Tu] F. J. TURIEL, Dimension transverse des orbites d'une action feuilletée de ℝn sur une variété feuilletée compacte, (Sém. G. Darboux Univ-Montpellier II, 1987). Zbl0682.57009
  23. [V] I. VAISMAN, Lectures on the geometry of Poisson manifolds, (Progress in Math., Birkhaüser, 1994). Zbl0810.53019MR95h:58057
  24. [W] A. WEINSTEIN, Symplectic manifolds and their lagrangian submanifolds, (Adv. in Math., vol. 6, 1971, p. 329-346). Zbl0213.48203MR44 #3351

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.