Diagrammes de Dynkin et algèbres enveloppantes d'algèbres de Lie semi-simples
Annales scientifiques de l'École Normale Supérieure (1998)
- Volume: 31, Issue: 5, page 631-657
- ISSN: 0012-9593
Access Full Article
topHow to cite
topPolo, Patrick. "Diagrammes de Dynkin et algèbres enveloppantes d'algèbres de Lie semi-simples." Annales scientifiques de l'École Normale Supérieure 31.5 (1998): 631-657. <http://eudml.org/doc/82473>.
@article{Polo1998,
author = {Polo, Patrick},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Dynkin diagram; enveloping algebra; Morita invariant; semisimple Lie algebra},
language = {fre},
number = {5},
pages = {631-657},
publisher = {Elsevier},
title = {Diagrammes de Dynkin et algèbres enveloppantes d'algèbres de Lie semi-simples},
url = {http://eudml.org/doc/82473},
volume = {31},
year = {1998},
}
TY - JOUR
AU - Polo, Patrick
TI - Diagrammes de Dynkin et algèbres enveloppantes d'algèbres de Lie semi-simples
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1998
PB - Elsevier
VL - 31
IS - 5
SP - 631
EP - 657
LA - fre
KW - Dynkin diagram; enveloping algebra; Morita invariant; semisimple Lie algebra
UR - http://eudml.org/doc/82473
ER -
References
top- [1] J. ALEV et P. POLO, A rigidity theorem for finite group actions on enveloping algebras of semisimple Lie algebras (Adv. in Math., Vol. 111, 1995, pp. 208-226). Zbl0823.17011MR95m:16015
- [2] H. BASS, Algebraic K-theory, Benjamin, London Amsterdam, 1968. Zbl0174.30302MR40 #2736
- [3] A. BEILINSON et J. BERNSTEIN, Localisation de g-modules, (C. R. Acad. Sc. Paris, t. 292, 1981, pp. 15-18). Zbl0476.14019MR82k:14015
- [4] W. BORHO, Berechnung der Gelfand-Kirillov Dimension bei induzierte Darstellungen (Math. Annalen, Vol. 225, 1977, pp. 179-194). Zbl0346.17012MR56 #12085
- [5] W. BORHO, On the Joseph-Small additivity principle for Goldie ranks (Compositio Math., Vol. 47, 1982, pp. 3-29). Zbl0502.17007MR84a:17007
- [6] W. BORHO et J. L. BRYLINSKI, Differential Operators on Homogeneous Spaces. I (Invent. math., Vol. 69, 1982, pp. 437-476). Zbl0504.22015MR84b:17007
- [7] W. BORHO et J. C. JANTZEN, Über primitive Ideale in der Einhüllenden einer halbeinfacher Lie-Algebra (Invent. math., Vol. 39, 1977, pp. 1-53). Zbl0327.17002MR56 #12079
- [8] N. BOURBAKI, Groupes et algèbres de Lie, Chap. I, IV-VI, VII-VIII, Hermann, Paris, 1971, 1968, 1975.
- [9] A. W. CHATTERS et C. R. HAJARNAVIS, Rings with chain conditions, Research Notes in Math., Vol. 44, Pitman, Boston London Melbourne, 1980. Zbl0446.16001MR82k:16020
- [10] D.H. COLLINGWOOD et W. M. MCGOVERN, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold, New York, 1993. Zbl0972.17008MR94j:17001
- [11] M. DEMAZURE, Automorphismes et déformations des variétés de Borel (Inventiones math., Vol. 39, 1977, pp. 179-186). Zbl0406.14030MR55 #8054
- [12] J. DIXMIER, Quotients simples de l'algèbre enveloppante de sl2 (J. Algebra, Vol. 24, 1973, pp. 551-564). Zbl0252.17004MR46 #9134
- [13] J. DIXMIER, Algèbres Enveloppantes, Gauthier-Villars, Paris Bruxelles Montréal, 1974. Zbl0308.17007MR58 #16803a
- [14] H. HECHT et D. MILIČIĆ, On the cohomological dimension of the localization functor (Proc. Amer. Math. Soc., Vol. 108, 1990, pp. 249-254). Zbl0714.22011MR90d:17011
- [15] H. HILLER, Geometry of Coxeter groups, Research Notes in Maths, Vol. 54, Pitman, Boston London Melbourne, 1982. Zbl0483.57002MR83h:14045
- [16] T. J. HODGES, K-Theory of D-modules and primitive factors of enveloping algebras of semisimple Lie algebras (Bull. Sc. math., T. 113, 1989, pp. 85-88). Zbl0672.17008MR90b:17022
- [17] T. J. HODGES, Morita Equivalence of Primitive factors of U(sl(2)), pp. 175-179 in : Kazhdan-Lusztig theories and related topics (ed. V. Deodhar), Contemporary Maths, Vol. 139, 1992. Zbl0814.17008MR94e:17007
- [18] T. J. HODGES et S. P. SMITH, On the global dimension of certain primitive factors of the enveloping algebra of a semisimple Lie algebra (J. London Math. Soc., Vol. 32, 1985, pp. 411-418). Zbl0588.17009MR87g:17015
- [19] J. C. JANTZEN, Einhüllende Algebren halbeinfacher Lie Algebren, Springer-Verlag, Berlin Heidelberg New York, 1983. Zbl0541.17001
- [20] A. JOSEPH, On the annihilators of the simple subquotients of the principal series (Ann. Scient. Éc. Norm. Sup., t. 10, 1977, pp. 419-440). Zbl0386.17004MR58 #809
- [21] A. JOSEPH, Gelfand-Kirillov dimension for the annihilators of simple quotients of Verma modules (J. London Math. Soc., Vol. 18, 1978, pp. 50-60). Zbl0401.17007MR58 #22202
- [22] A. JOSEPH, Kostant's Problem, Goldie Rank and the Gelfand-Kirillov Conjecture (Invent. Math., Vol. 56, 1980, pp. 191-213). Zbl0446.17006MR82f:17008
- [23] A. JOSEPH, Goldie Rank in the Enveloping Algebra of a Semisimple Lie Algebra, I (J. Algebra, Vol. 65, 1980, pp. 284-306). Zbl0441.17004MR82f:17009
- [24] A. JOSEPH, Goldie Rank in the Enveloping Algebra of a Semisimple Lie Algebra, III (J. Algebra, Vol. 73, 1981, pp. 295-326). Zbl0482.17002MR83k:17010
- [25] A. JOSEPH, Kostant's problem and Goldie rank, pp. 249-266 in : Non Commutative Harmonic Analysis and Lie Groups (éds. J. Carmona, M. Vergne), Lecture Notes in Math., Vol. 880, Springer-Verlag, Berlin Heidelberg New York, 1981. Zbl0468.17004MR83m:17006
- [26] A. JOSEPH, On the Cyclicity of Vectors Associated with Duflo Involutions, pp. 144-188 in : Non Commutative Harmonic Analysis and Lie Groups (éds. J. Carmona, P. Delorme, M. Vergne), Lecture Notes in Math., Vol. 1243, Springer-Verlag, Berlin Heidelberg New York, 1987. Zbl0621.17006MR88j:17008
- [27] A. JOSEPH, A Sum Rule for Scale Factors in the Goldie Rank Polynomials (J. Algebra, Vol. 118, 1988, pp. 276-311). Zbl0699.17014MR90a:17006
- [28] A. JOSEPH, Coxeter structure and finite group action, pp. 185-219 in : Algèbre non commutative, groupes quantiques et invariants (éds. J. Alev, G. Cauchon), Soc. Math. France, 1997. Zbl0891.17007MR98k:17011
- [29] A. JOSEPH et L. W. SMALL, An additivity principle for Goldie rank (Israel J. Math., Vol. 31, 1978, pp. 105-114). Zbl0395.17010MR80j:17005
- [30] A. JOSEPH et J. T. STAFFORD, Modules of l-finite vectors over semisimple Lie algebras (Proc. London Math. Soc., Vol. 49, 1984, pp. 361-384). Zbl0543.17004MR86a:17004
- [31] G. R. KRAUSE et T. H. LENAGAN, Growth of algebras and Gelfand-Kirillov dimension, Research Notes in Math., Vol. 116, Pitman, Boston London Melbourne, 1985. Zbl0564.16001MR86g:16001
- [32] T. LEVASSEUR et J. T. STAFFORD, Rings of differential operators on classical rings of invariants (Memoirs of the Amer. Math. Soc., Vol. 412, 1989). Zbl0691.16019MR90i:17018
- [33] W. M. MCGOVERN, Dixmier Algebras and the Orbit Method, pp. 397-416 in : Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (eds. A. Connes et al.), Progress in Math., Vol. 92, Birkhäuser, Boston Basel Berlin, 1990. Zbl0854.17011MR92f:17010
- [34] S. MONTGOMERY, Fixed Rings of Finite Automorphism Groups of Associative Rings, Lecture Notes in Math., Vol. 818, Springer-Verlag, Berlin Heidelberg New York, 1980. Zbl0449.16001MR81j:16041
- [35] S. MONTGOMERY, Prime ideals in fixed rings (Comm. in Algebra, Vol. 9, 1981, pp. 423-449). Zbl0453.16019MR82c:16034
- [36] W. SOERGEL, The prime spectrum of the enveloping algebra of a reductive Lie algebra (Math. Z., Vol. 204, 1990, pp. 559-581). Zbl0685.17006MR91d:17015
- [37] W. SOERGEL, Hochschild cohomology of regular maximal primitive quotients of enveloping algebras of semisimple Lie algebras (Ann. scient. Éc. Norm. Sup., t. 29, 1996, pp. 535-538). Zbl0871.17005MR97e:17016
- [38] A. ZAHID, Les endomorphismes l-finis des modules de Whittaker (Bull. Soc. Math. France, t. 117, 1989, pp. 451-477). Zbl0737.17005MR91h:17010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.