Diagrammes de Dynkin et algèbres enveloppantes d'algèbres de Lie semi-simples

Patrick Polo

Annales scientifiques de l'École Normale Supérieure (1998)

  • Volume: 31, Issue: 5, page 631-657
  • ISSN: 0012-9593

How to cite

top

Polo, Patrick. "Diagrammes de Dynkin et algèbres enveloppantes d'algèbres de Lie semi-simples." Annales scientifiques de l'École Normale Supérieure 31.5 (1998): 631-657. <http://eudml.org/doc/82473>.

@article{Polo1998,
author = {Polo, Patrick},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Dynkin diagram; enveloping algebra; Morita invariant; semisimple Lie algebra},
language = {fre},
number = {5},
pages = {631-657},
publisher = {Elsevier},
title = {Diagrammes de Dynkin et algèbres enveloppantes d'algèbres de Lie semi-simples},
url = {http://eudml.org/doc/82473},
volume = {31},
year = {1998},
}

TY - JOUR
AU - Polo, Patrick
TI - Diagrammes de Dynkin et algèbres enveloppantes d'algèbres de Lie semi-simples
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1998
PB - Elsevier
VL - 31
IS - 5
SP - 631
EP - 657
LA - fre
KW - Dynkin diagram; enveloping algebra; Morita invariant; semisimple Lie algebra
UR - http://eudml.org/doc/82473
ER -

References

top
  1. [1] J. ALEV et P. POLO, A rigidity theorem for finite group actions on enveloping algebras of semisimple Lie algebras (Adv. in Math., Vol. 111, 1995, pp. 208-226). Zbl0823.17011MR95m:16015
  2. [2] H. BASS, Algebraic K-theory, Benjamin, London Amsterdam, 1968. Zbl0174.30302MR40 #2736
  3. [3] A. BEILINSON et J. BERNSTEIN, Localisation de g-modules, (C. R. Acad. Sc. Paris, t. 292, 1981, pp. 15-18). Zbl0476.14019MR82k:14015
  4. [4] W. BORHO, Berechnung der Gelfand-Kirillov Dimension bei induzierte Darstellungen (Math. Annalen, Vol. 225, 1977, pp. 179-194). Zbl0346.17012MR56 #12085
  5. [5] W. BORHO, On the Joseph-Small additivity principle for Goldie ranks (Compositio Math., Vol. 47, 1982, pp. 3-29). Zbl0502.17007MR84a:17007
  6. [6] W. BORHO et J. L. BRYLINSKI, Differential Operators on Homogeneous Spaces. I (Invent. math., Vol. 69, 1982, pp. 437-476). Zbl0504.22015MR84b:17007
  7. [7] W. BORHO et J. C. JANTZEN, Über primitive Ideale in der Einhüllenden einer halbeinfacher Lie-Algebra (Invent. math., Vol. 39, 1977, pp. 1-53). Zbl0327.17002MR56 #12079
  8. [8] N. BOURBAKI, Groupes et algèbres de Lie, Chap. I, IV-VI, VII-VIII, Hermann, Paris, 1971, 1968, 1975. 
  9. [9] A. W. CHATTERS et C. R. HAJARNAVIS, Rings with chain conditions, Research Notes in Math., Vol. 44, Pitman, Boston London Melbourne, 1980. Zbl0446.16001MR82k:16020
  10. [10] D.H. COLLINGWOOD et W. M. MCGOVERN, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold, New York, 1993. Zbl0972.17008MR94j:17001
  11. [11] M. DEMAZURE, Automorphismes et déformations des variétés de Borel (Inventiones math., Vol. 39, 1977, pp. 179-186). Zbl0406.14030MR55 #8054
  12. [12] J. DIXMIER, Quotients simples de l'algèbre enveloppante de sl2 (J. Algebra, Vol. 24, 1973, pp. 551-564). Zbl0252.17004MR46 #9134
  13. [13] J. DIXMIER, Algèbres Enveloppantes, Gauthier-Villars, Paris Bruxelles Montréal, 1974. Zbl0308.17007MR58 #16803a
  14. [14] H. HECHT et D. MILIČIĆ, On the cohomological dimension of the localization functor (Proc. Amer. Math. Soc., Vol. 108, 1990, pp. 249-254). Zbl0714.22011MR90d:17011
  15. [15] H. HILLER, Geometry of Coxeter groups, Research Notes in Maths, Vol. 54, Pitman, Boston London Melbourne, 1982. Zbl0483.57002MR83h:14045
  16. [16] T. J. HODGES, K-Theory of D-modules and primitive factors of enveloping algebras of semisimple Lie algebras (Bull. Sc. math., T. 113, 1989, pp. 85-88). Zbl0672.17008MR90b:17022
  17. [17] T. J. HODGES, Morita Equivalence of Primitive factors of U(sl(2)), pp. 175-179 in : Kazhdan-Lusztig theories and related topics (ed. V. Deodhar), Contemporary Maths, Vol. 139, 1992. Zbl0814.17008MR94e:17007
  18. [18] T. J. HODGES et S. P. SMITH, On the global dimension of certain primitive factors of the enveloping algebra of a semisimple Lie algebra (J. London Math. Soc., Vol. 32, 1985, pp. 411-418). Zbl0588.17009MR87g:17015
  19. [19] J. C. JANTZEN, Einhüllende Algebren halbeinfacher Lie Algebren, Springer-Verlag, Berlin Heidelberg New York, 1983. Zbl0541.17001
  20. [20] A. JOSEPH, On the annihilators of the simple subquotients of the principal series (Ann. Scient. Éc. Norm. Sup., t. 10, 1977, pp. 419-440). Zbl0386.17004MR58 #809
  21. [21] A. JOSEPH, Gelfand-Kirillov dimension for the annihilators of simple quotients of Verma modules (J. London Math. Soc., Vol. 18, 1978, pp. 50-60). Zbl0401.17007MR58 #22202
  22. [22] A. JOSEPH, Kostant's Problem, Goldie Rank and the Gelfand-Kirillov Conjecture (Invent. Math., Vol. 56, 1980, pp. 191-213). Zbl0446.17006MR82f:17008
  23. [23] A. JOSEPH, Goldie Rank in the Enveloping Algebra of a Semisimple Lie Algebra, I (J. Algebra, Vol. 65, 1980, pp. 284-306). Zbl0441.17004MR82f:17009
  24. [24] A. JOSEPH, Goldie Rank in the Enveloping Algebra of a Semisimple Lie Algebra, III (J. Algebra, Vol. 73, 1981, pp. 295-326). Zbl0482.17002MR83k:17010
  25. [25] A. JOSEPH, Kostant's problem and Goldie rank, pp. 249-266 in : Non Commutative Harmonic Analysis and Lie Groups (éds. J. Carmona, M. Vergne), Lecture Notes in Math., Vol. 880, Springer-Verlag, Berlin Heidelberg New York, 1981. Zbl0468.17004MR83m:17006
  26. [26] A. JOSEPH, On the Cyclicity of Vectors Associated with Duflo Involutions, pp. 144-188 in : Non Commutative Harmonic Analysis and Lie Groups (éds. J. Carmona, P. Delorme, M. Vergne), Lecture Notes in Math., Vol. 1243, Springer-Verlag, Berlin Heidelberg New York, 1987. Zbl0621.17006MR88j:17008
  27. [27] A. JOSEPH, A Sum Rule for Scale Factors in the Goldie Rank Polynomials (J. Algebra, Vol. 118, 1988, pp. 276-311). Zbl0699.17014MR90a:17006
  28. [28] A. JOSEPH, Coxeter structure and finite group action, pp. 185-219 in : Algèbre non commutative, groupes quantiques et invariants (éds. J. Alev, G. Cauchon), Soc. Math. France, 1997. Zbl0891.17007MR98k:17011
  29. [29] A. JOSEPH et L. W. SMALL, An additivity principle for Goldie rank (Israel J. Math., Vol. 31, 1978, pp. 105-114). Zbl0395.17010MR80j:17005
  30. [30] A. JOSEPH et J. T. STAFFORD, Modules of l-finite vectors over semisimple Lie algebras (Proc. London Math. Soc., Vol. 49, 1984, pp. 361-384). Zbl0543.17004MR86a:17004
  31. [31] G. R. KRAUSE et T. H. LENAGAN, Growth of algebras and Gelfand-Kirillov dimension, Research Notes in Math., Vol. 116, Pitman, Boston London Melbourne, 1985. Zbl0564.16001MR86g:16001
  32. [32] T. LEVASSEUR et J. T. STAFFORD, Rings of differential operators on classical rings of invariants (Memoirs of the Amer. Math. Soc., Vol. 412, 1989). Zbl0691.16019MR90i:17018
  33. [33] W. M. MCGOVERN, Dixmier Algebras and the Orbit Method, pp. 397-416 in : Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (eds. A. Connes et al.), Progress in Math., Vol. 92, Birkhäuser, Boston Basel Berlin, 1990. Zbl0854.17011MR92f:17010
  34. [34] S. MONTGOMERY, Fixed Rings of Finite Automorphism Groups of Associative Rings, Lecture Notes in Math., Vol. 818, Springer-Verlag, Berlin Heidelberg New York, 1980. Zbl0449.16001MR81j:16041
  35. [35] S. MONTGOMERY, Prime ideals in fixed rings (Comm. in Algebra, Vol. 9, 1981, pp. 423-449). Zbl0453.16019MR82c:16034
  36. [36] W. SOERGEL, The prime spectrum of the enveloping algebra of a reductive Lie algebra (Math. Z., Vol. 204, 1990, pp. 559-581). Zbl0685.17006MR91d:17015
  37. [37] W. SOERGEL, Hochschild cohomology of regular maximal primitive quotients of enveloping algebras of semisimple Lie algebras (Ann. scient. Éc. Norm. Sup., t. 29, 1996, pp. 535-538). Zbl0871.17005MR97e:17016
  38. [38] A. ZAHID, Les endomorphismes l-finis des modules de Whittaker (Bull. Soc. Math. France, t. 117, 1989, pp. 451-477). Zbl0737.17005MR91h:17010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.