Bilinear space-time estimates for homogeneous wave equations
Damiano Foschi; Sergiu Klainerman
Annales scientifiques de l'École Normale Supérieure (2000)
- Volume: 33, Issue: 2, page 211-274
- ISSN: 0012-9593
Access Full Article
topHow to cite
topFoschi, Damiano, and Klainerman, Sergiu. "Bilinear space-time estimates for homogeneous wave equations." Annales scientifiques de l'École Normale Supérieure 33.2 (2000): 211-274. <http://eudml.org/doc/82514>.
@article{Foschi2000,
author = {Foschi, Damiano, Klainerman, Sergiu},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {space-time regularity; products and bilinear forms of solutions},
language = {eng},
number = {2},
pages = {211-274},
publisher = {Elsevier},
title = {Bilinear space-time estimates for homogeneous wave equations},
url = {http://eudml.org/doc/82514},
volume = {33},
year = {2000},
}
TY - JOUR
AU - Foschi, Damiano
AU - Klainerman, Sergiu
TI - Bilinear space-time estimates for homogeneous wave equations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 2
SP - 211
EP - 274
LA - eng
KW - space-time regularity; products and bilinear forms of solutions
UR - http://eudml.org/doc/82514
ER -
References
top- [1] Beals M., Bézard M., Low regularity local solutions for field equations, Comm. Partial Differential Equations 21 (1-2) (1996) 79-124. Zbl0852.35098MR97e:35111
- [2] Foschi D., On a endpoint case of the Klainerman-Machedon estimates, Preprint, 1998. Zbl0951.35020
- [3] Ginibre J., Velo G., Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1) (1995) 50-68. Zbl0849.35064MR97a:46047
- [4] Hörmander L., The Analysis of Linear Partial Differential Operators. I, 2nd ed., Springer Study Edition, Distribution Theory and Fourier Analysis, Springer, Berlin, 1990. Zbl0712.35001
- [5] Keel M., Tao T., Endpoint Strichartz estimates, Amer. J. Math. 120 (5) (1998) 955-980. Zbl0922.35028MR2000d:35018
- [6] Klainerman S., Machedon M., Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (9) (1993) 1221-1268. Zbl0803.35095MR94h:35137
- [7] Klainerman S., Machedon M., On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J. 74 (1) (1994) 19-44. Zbl0818.35123MR95f:35210
- [8] Klainerman S., Machedon M., Finite energy solutions of the Yang-Mills equations in ℝ3 + 1, Ann. of Math. 142 (1995) 39-119. Zbl0827.53056MR96i:58167
- [9] Klainerman S., Machedon M., Smoothing estimates for null forms and applications, Duke Math. J. 81 (1) (1995) 99-133 (A celebration of John F. Nash, Jr.). Zbl0909.35094MR97h:35022
- [10] Klainerman S., Machedon M., Estimates for null forms and the spaces Hs,δ, Int. Math. Res. Not. 17 (1996) 853-865. Zbl0909.35095MR98j:46028
- [11] Klainerman S., Machedon M., Remark on Strichartz-type inequalities, Int. Math. Res. Not. 5 (1996) 201-220. Zbl0853.35062MR97g:46037
- [12] Klainerman S., Machedon M., On the optimal regularity for gauge field theories, Differential and Integral Equations 6 (1997) 1019-1030. Zbl0940.35011MR2000d:58043
- [13] Klainerman S., Machedon M., On the regularity properties of a model problem related to wave maps, Duke Math. J. 87 (3) (1997) 553-589. Zbl0878.35075MR98e:35118
- [14] Klainerman S., Selberg S., Remark on the optimal regularity for equations of wave maps type, Comm. Partial Differential Equations 22 (5-6) (1997) 901-918. Zbl0884.35102MR99c:35163
- [15] Klainerman S., Tataru D., On the optimal regularity for Yang-Mills equations in ℝ4+1, Preprint, 1998.
- [16] Selberg S., Multilinear space-time estimates and applications to local existence theory for nonlinear wave equations, Ph.D. Thesis, Princeton University, 1999.
- [17] Stein E.M., Harmonic Analysis : Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993. Zbl0821.42001MR95c:42002
- [18] Strichartz R.S., Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (3) (1977) 705-714. Zbl0372.35001MR58 #23577
- [19] Tao T., private communication.
- [20] Tao T., Vargas A., Vega L., A bilinear approach to the restriction and Kakeya conjectures, J. Amer. Math. Soc. 11 (4) (1998) 967-1000. Zbl0924.42008MR99f:42026
- [21] Tataru D., On global existence and scattering for the wave maps equation, Preprint, 1998.
- [22] Tataru D., On the equation □u = |∇u|² in 5 + 1 dimensions, Preprint, 1999.
- [23] Tomas P.A., A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975) 477-478. Zbl0298.42011MR50 #10681
- [24] Wolff T., A sharp bilinear cone restriction estimate, Preprint, 1999.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.