Bilinear space-time estimates for homogeneous wave equations

Damiano Foschi; Sergiu Klainerman

Annales scientifiques de l'École Normale Supérieure (2000)

  • Volume: 33, Issue: 2, page 211-274
  • ISSN: 0012-9593

How to cite

top

Foschi, Damiano, and Klainerman, Sergiu. "Bilinear space-time estimates for homogeneous wave equations." Annales scientifiques de l'École Normale Supérieure 33.2 (2000): 211-274. <http://eudml.org/doc/82514>.

@article{Foschi2000,
author = {Foschi, Damiano, Klainerman, Sergiu},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {space-time regularity; products and bilinear forms of solutions},
language = {eng},
number = {2},
pages = {211-274},
publisher = {Elsevier},
title = {Bilinear space-time estimates for homogeneous wave equations},
url = {http://eudml.org/doc/82514},
volume = {33},
year = {2000},
}

TY - JOUR
AU - Foschi, Damiano
AU - Klainerman, Sergiu
TI - Bilinear space-time estimates for homogeneous wave equations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 2
SP - 211
EP - 274
LA - eng
KW - space-time regularity; products and bilinear forms of solutions
UR - http://eudml.org/doc/82514
ER -

References

top
  1. [1] Beals M., Bézard M., Low regularity local solutions for field equations, Comm. Partial Differential Equations 21 (1-2) (1996) 79-124. Zbl0852.35098MR97e:35111
  2. [2] Foschi D., On a endpoint case of the Klainerman-Machedon estimates, Preprint, 1998. Zbl0951.35020
  3. [3] Ginibre J., Velo G., Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1) (1995) 50-68. Zbl0849.35064MR97a:46047
  4. [4] Hörmander L., The Analysis of Linear Partial Differential Operators. I, 2nd ed., Springer Study Edition, Distribution Theory and Fourier Analysis, Springer, Berlin, 1990. Zbl0712.35001
  5. [5] Keel M., Tao T., Endpoint Strichartz estimates, Amer. J. Math. 120 (5) (1998) 955-980. Zbl0922.35028MR2000d:35018
  6. [6] Klainerman S., Machedon M., Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (9) (1993) 1221-1268. Zbl0803.35095MR94h:35137
  7. [7] Klainerman S., Machedon M., On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J. 74 (1) (1994) 19-44. Zbl0818.35123MR95f:35210
  8. [8] Klainerman S., Machedon M., Finite energy solutions of the Yang-Mills equations in ℝ3 + 1, Ann. of Math. 142 (1995) 39-119. Zbl0827.53056MR96i:58167
  9. [9] Klainerman S., Machedon M., Smoothing estimates for null forms and applications, Duke Math. J. 81 (1) (1995) 99-133 (A celebration of John F. Nash, Jr.). Zbl0909.35094MR97h:35022
  10. [10] Klainerman S., Machedon M., Estimates for null forms and the spaces Hs,δ, Int. Math. Res. Not. 17 (1996) 853-865. Zbl0909.35095MR98j:46028
  11. [11] Klainerman S., Machedon M., Remark on Strichartz-type inequalities, Int. Math. Res. Not. 5 (1996) 201-220. Zbl0853.35062MR97g:46037
  12. [12] Klainerman S., Machedon M., On the optimal regularity for gauge field theories, Differential and Integral Equations 6 (1997) 1019-1030. Zbl0940.35011MR2000d:58043
  13. [13] Klainerman S., Machedon M., On the regularity properties of a model problem related to wave maps, Duke Math. J. 87 (3) (1997) 553-589. Zbl0878.35075MR98e:35118
  14. [14] Klainerman S., Selberg S., Remark on the optimal regularity for equations of wave maps type, Comm. Partial Differential Equations 22 (5-6) (1997) 901-918. Zbl0884.35102MR99c:35163
  15. [15] Klainerman S., Tataru D., On the optimal regularity for Yang-Mills equations in ℝ4+1, Preprint, 1998. 
  16. [16] Selberg S., Multilinear space-time estimates and applications to local existence theory for nonlinear wave equations, Ph.D. Thesis, Princeton University, 1999. 
  17. [17] Stein E.M., Harmonic Analysis : Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993. Zbl0821.42001MR95c:42002
  18. [18] Strichartz R.S., Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (3) (1977) 705-714. Zbl0372.35001MR58 #23577
  19. [19] Tao T., private communication. 
  20. [20] Tao T., Vargas A., Vega L., A bilinear approach to the restriction and Kakeya conjectures, J. Amer. Math. Soc. 11 (4) (1998) 967-1000. Zbl0924.42008MR99f:42026
  21. [21] Tataru D., On global existence and scattering for the wave maps equation, Preprint, 1998. 
  22. [22] Tataru D., On the equation □u = |∇u|² in 5 + 1 dimensions, Preprint, 1999. 
  23. [23] Tomas P.A., A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975) 477-478. Zbl0298.42011MR50 #10681
  24. [24] Wolff T., A sharp bilinear cone restriction estimate, Preprint, 1999. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.