Most automorphisms of a hyperbolic group have very simple dynamics

Gilbert Levitt; Martin Lustig

Annales scientifiques de l'École Normale Supérieure (2000)

  • Volume: 33, Issue: 4, page 507-517
  • ISSN: 0012-9593

How to cite

top

Levitt, Gilbert, and Lustig, Martin. "Most automorphisms of a hyperbolic group have very simple dynamics." Annales scientifiques de l'École Normale Supérieure 33.4 (2000): 507-517. <http://eudml.org/doc/82525>.

@article{Levitt2000,
author = {Levitt, Gilbert, Lustig, Martin},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {quasi-isometries; hyperbolic groups; automorphisms; fixed points; isogredience classes; geodesic metric spaces},
language = {eng},
number = {4},
pages = {507-517},
publisher = {Elsevier},
title = {Most automorphisms of a hyperbolic group have very simple dynamics},
url = {http://eudml.org/doc/82525},
volume = {33},
year = {2000},
}

TY - JOUR
AU - Levitt, Gilbert
AU - Lustig, Martin
TI - Most automorphisms of a hyperbolic group have very simple dynamics
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 4
SP - 507
EP - 517
LA - eng
KW - quasi-isometries; hyperbolic groups; automorphisms; fixed points; isogredience classes; geodesic metric spaces
UR - http://eudml.org/doc/82525
ER -

References

top
  1. [1] BESTVINA M., FEIGHN M., A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85-101. Zbl0724.57029MR93d:53053
  2. [2] BESTVINA M., FEIGHN M., Bounding the complexity of group actions on real trees, unpublished manuscript. Zbl0724.20019
  3. [3] BESTVINA M., FEIGHN M., HANDEL M., Solvable subgroups of Out(Fn) are virtually abelian, Preprint. Zbl1052.20027
  4. [4] COHEN M.M., LUSTIG M., On the dynamics and the fixed subgroup of a free group automorphism, Invent. Math. 196 (1989) 613-638. Zbl0678.57001MR90m:57004
  5. [5] COORNAERT M., DELZANT T., PAPADOPOULOS A., Géométrie et Théorie des Groupes, Lecture Notes, Vol. 1441, Springer, 1990. Zbl0727.20018MR92f:57003
  6. [6] CULLER M., MORGAN J.W., Group actions on R-trees, Proc. London Math. Soc. 55 (1987) 571-604. Zbl0658.20021MR88f:20055
  7. [7] CURTILLET J.-C., Geodäten auf Flachen und eine Zetafunktion für Automorphismen von freien Gruppen, Ph.D. Thesis, Bochum, 1997. 
  8. [8] DICKS W., LLIBRE J., Orientation-preserving self-homeomorphisms of the surface of genus two have points of period at most two, Proc. Amer. Math. Soc. 124 (1996) 1583-1591. Zbl0853.55001MR96g:55004
  9. [9] GABORIAU D., JAEGER A., LEVITT G., LUSTIG M., An index for counting fixed points of automorphisms of free groups, Duke Math. J. 93 (1998) 425-452. Zbl0946.20010MR99f:20051
  10. [10] GABORIAU D., LEVITT G., The rank of actions on R-trees, Ann. Sci. ENS 28 (1995) 549-570. Zbl0835.20038MR97c:20039
  11. [11] Ghys E., de la Harpe P. (Eds.), Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics, Vol. 83, Birkhäuser, 1990. Zbl0731.20025MR92f:53050
  12. [12] GROMOV M., Hyperbolic groups, in : Gersten S.M. (Ed.), Essays in Group Theory, MSRI Publ., Vol. 8, Springer, 1987, pp. 75-263. Zbl0634.20015MR89e:20070
  13. [13] JÄGER A., LUSTIG M., Free group automorphisms with many fixed points at infinity, Math. Z. (to appear). Zbl1140.20027
  14. [14] LEVITT G., LUSTIG M., Periodic ends, growth rates, Hölder dynamics for automorphisms of free groups, Comment. Math. Helv. (to appear) (available from http://picard.ups-tlse.fr/~levitt/). Zbl0965.20026
  15. [15] LEVITT G., LUSTIG M., Dynamics of automorphisms of free groups and hyperbolic groups, Preprint (available from http://picard.ups-tlse.fr/~levitt/). Zbl1157.20017
  16. [16] LUSTIG M., Automorphisms, train tracks and non-simplicial R-tree actions, Comm. in Alg. (to appear). 
  17. [17] MORGAN J.W., SHALEN P.B., Valuations, trees, and degenerations of hyperbolic structures, I, Ann. Math. 120 (1984) 401-476. Zbl0583.57005MR86f:57011
  18. [18] NIELSEN J., Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927) 189-358 ; English transl. in : Collected Mathematical Papers, Birkhäuser, 1986. Zbl53.0545.12JFM53.0545.12
  19. [19] PAULIN F., The Gromov topology on R-trees, Topology Appl. 32 (1989) 197-221. Zbl0675.20033MR90k:57015
  20. [20] PAULIN F., Sur les automorphismes extérieurs des groupes hyperboliques, Ann. Sci. ENS 30 (1997) 147-167. Zbl0877.20014MR98c:20070
  21. [21] SCOTT P., WALL T., Topological methods in group theory, in : Wall T. (Ed.), Homological Group Theory, LMS Lect. Notes, Vol. 36, Camb. Univ. Press, 1979, pp. 137-203. Zbl0423.20023MR81m:57002
  22. [22] SHALEN P.B., Dendrology of groups : an introduction, in : Gersten S.M. (Ed.), Essays in Group Theory, MSRI Publ., Vol. 8, Springer, 1987, pp. 265-319. Zbl0649.20033MR89d:57012
  23. [23] SHORT H. ET AL., Notes on word hyperbolic groups, in : Ghys E., Haefliger A., Verjovsky A. (Eds.), Group Theory from a Geometrical Viewpoint, World Scientific, 1991, pp. 3-63. Zbl0849.20023MR93g:57001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.