Most automorphisms of a hyperbolic group have very simple dynamics
Annales scientifiques de l'École Normale Supérieure (2000)
- Volume: 33, Issue: 4, page 507-517
- ISSN: 0012-9593
Access Full Article
topHow to cite
topLevitt, Gilbert, and Lustig, Martin. "Most automorphisms of a hyperbolic group have very simple dynamics." Annales scientifiques de l'École Normale Supérieure 33.4 (2000): 507-517. <http://eudml.org/doc/82525>.
@article{Levitt2000,
author = {Levitt, Gilbert, Lustig, Martin},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {quasi-isometries; hyperbolic groups; automorphisms; fixed points; isogredience classes; geodesic metric spaces},
language = {eng},
number = {4},
pages = {507-517},
publisher = {Elsevier},
title = {Most automorphisms of a hyperbolic group have very simple dynamics},
url = {http://eudml.org/doc/82525},
volume = {33},
year = {2000},
}
TY - JOUR
AU - Levitt, Gilbert
AU - Lustig, Martin
TI - Most automorphisms of a hyperbolic group have very simple dynamics
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 4
SP - 507
EP - 517
LA - eng
KW - quasi-isometries; hyperbolic groups; automorphisms; fixed points; isogredience classes; geodesic metric spaces
UR - http://eudml.org/doc/82525
ER -
References
top- [1] BESTVINA M., FEIGHN M., A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85-101. Zbl0724.57029MR93d:53053
- [2] BESTVINA M., FEIGHN M., Bounding the complexity of group actions on real trees, unpublished manuscript. Zbl0724.20019
- [3] BESTVINA M., FEIGHN M., HANDEL M., Solvable subgroups of Out(Fn) are virtually abelian, Preprint. Zbl1052.20027
- [4] COHEN M.M., LUSTIG M., On the dynamics and the fixed subgroup of a free group automorphism, Invent. Math. 196 (1989) 613-638. Zbl0678.57001MR90m:57004
- [5] COORNAERT M., DELZANT T., PAPADOPOULOS A., Géométrie et Théorie des Groupes, Lecture Notes, Vol. 1441, Springer, 1990. Zbl0727.20018MR92f:57003
- [6] CULLER M., MORGAN J.W., Group actions on R-trees, Proc. London Math. Soc. 55 (1987) 571-604. Zbl0658.20021MR88f:20055
- [7] CURTILLET J.-C., Geodäten auf Flachen und eine Zetafunktion für Automorphismen von freien Gruppen, Ph.D. Thesis, Bochum, 1997.
- [8] DICKS W., LLIBRE J., Orientation-preserving self-homeomorphisms of the surface of genus two have points of period at most two, Proc. Amer. Math. Soc. 124 (1996) 1583-1591. Zbl0853.55001MR96g:55004
- [9] GABORIAU D., JAEGER A., LEVITT G., LUSTIG M., An index for counting fixed points of automorphisms of free groups, Duke Math. J. 93 (1998) 425-452. Zbl0946.20010MR99f:20051
- [10] GABORIAU D., LEVITT G., The rank of actions on R-trees, Ann. Sci. ENS 28 (1995) 549-570. Zbl0835.20038MR97c:20039
- [11] Ghys E., de la Harpe P. (Eds.), Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics, Vol. 83, Birkhäuser, 1990. Zbl0731.20025MR92f:53050
- [12] GROMOV M., Hyperbolic groups, in : Gersten S.M. (Ed.), Essays in Group Theory, MSRI Publ., Vol. 8, Springer, 1987, pp. 75-263. Zbl0634.20015MR89e:20070
- [13] JÄGER A., LUSTIG M., Free group automorphisms with many fixed points at infinity, Math. Z. (to appear). Zbl1140.20027
- [14] LEVITT G., LUSTIG M., Periodic ends, growth rates, Hölder dynamics for automorphisms of free groups, Comment. Math. Helv. (to appear) (available from http://picard.ups-tlse.fr/~levitt/). Zbl0965.20026
- [15] LEVITT G., LUSTIG M., Dynamics of automorphisms of free groups and hyperbolic groups, Preprint (available from http://picard.ups-tlse.fr/~levitt/). Zbl1157.20017
- [16] LUSTIG M., Automorphisms, train tracks and non-simplicial R-tree actions, Comm. in Alg. (to appear).
- [17] MORGAN J.W., SHALEN P.B., Valuations, trees, and degenerations of hyperbolic structures, I, Ann. Math. 120 (1984) 401-476. Zbl0583.57005MR86f:57011
- [18] NIELSEN J., Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927) 189-358 ; English transl. in : Collected Mathematical Papers, Birkhäuser, 1986. Zbl53.0545.12JFM53.0545.12
- [19] PAULIN F., The Gromov topology on R-trees, Topology Appl. 32 (1989) 197-221. Zbl0675.20033MR90k:57015
- [20] PAULIN F., Sur les automorphismes extérieurs des groupes hyperboliques, Ann. Sci. ENS 30 (1997) 147-167. Zbl0877.20014MR98c:20070
- [21] SCOTT P., WALL T., Topological methods in group theory, in : Wall T. (Ed.), Homological Group Theory, LMS Lect. Notes, Vol. 36, Camb. Univ. Press, 1979, pp. 137-203. Zbl0423.20023MR81m:57002
- [22] SHALEN P.B., Dendrology of groups : an introduction, in : Gersten S.M. (Ed.), Essays in Group Theory, MSRI Publ., Vol. 8, Springer, 1987, pp. 265-319. Zbl0649.20033MR89d:57012
- [23] SHORT H. ET AL., Notes on word hyperbolic groups, in : Ghys E., Haefliger A., Verjovsky A. (Eds.), Group Theory from a Geometrical Viewpoint, World Scientific, 1991, pp. 3-63. Zbl0849.20023MR93g:57001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.