Surfaces à courbure extrinsèque négative dans l'espace hyperbolique

Jean-Marc Schlenker

Annales scientifiques de l'École Normale Supérieure (2001)

  • Volume: 34, Issue: 1, page 79-130
  • ISSN: 0012-9593

How to cite

top

Schlenker, Jean-Marc. "Surfaces à courbure extrinsèque négative dans l'espace hyperbolique." Annales scientifiques de l'École Normale Supérieure 34.1 (2001): 79-130. <http://eudml.org/doc/82540>.

@article{Schlenker2001,
author = {Schlenker, Jean-Marc},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {surface; negative curvature; isometric immersion; complete Riemannian metric; Efimov theorem},
language = {fre},
number = {1},
pages = {79-130},
publisher = {Elsevier},
title = {Surfaces à courbure extrinsèque négative dans l'espace hyperbolique},
url = {http://eudml.org/doc/82540},
volume = {34},
year = {2001},
}

TY - JOUR
AU - Schlenker, Jean-Marc
TI - Surfaces à courbure extrinsèque négative dans l'espace hyperbolique
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 1
SP - 79
EP - 130
LA - fre
KW - surface; negative curvature; isometric immersion; complete Riemannian metric; Efimov theorem
UR - http://eudml.org/doc/82540
ER -

References

top
  1. [1] Burago Yu.D, Shefel' S.Z, The geometry of surfaces in Euclidean spaces, in: Burago Yu.D, Zalgaller V.A (Eds.), Geometry III, Chapter I, Springer-Verlag, 1992, pp. 1-86, (Encyclopaedia of Mathematical Sciences, Vol. 48). Zbl0781.53006MR1306734
  2. [2] Efimov N.V, Apparition of singularities on surfaces with negative curvature, Mat. Sbornik64 ((106) 2) (1964) 286-320. Zbl0126.37402MR167938
  3. [3] Efimov N.V, Surfaces with a slowly changing negative curvature, Russian Math. Surveys5 (131) (1966) 1-56. Zbl0171.19903MR202092
  4. [4] Efimov N.V, Hyperbolic problems in the theory of surfaces, in: Proc. Internat. Congr. Math. (Moscow, 1966), Mir, Moscow, 1968, pp. 177-188. Zbl0188.53604MR238232
  5. [5] Gallot S, Hulin D, Lafontaine J, Riemannian Geometry, Springer-Verlag, 1987. Zbl0636.53001MR909697
  6. [6] Hilbert D, Über Fläschen von konstanter Gaußscher Krummung, Trans. Amer. Math. Soc.2 (1901) 87-99. JFM32.0608.01
  7. [7] Hong J.X, Realization in R3 of complete Riemannian manifolds with negative curvature, Comm. Anal. Geom.1 (3–4) (1993) 487-514. Zbl0856.53004
  8. [8] Klotz-Milnor T, Efimov's theorem about complete immersed surfaces of negative curvature, Adv. in Math.8 (1972) 474-543. Zbl0236.53055MR301679
  9. [9] Labourie F, Immersions isométriques elliptiques et courbes pseudo-holomorphes, J. Differential Geom.30 (1989) 395-424. Zbl0682.53063MR1010166
  10. [10] Labourie F, Problèmes de Monge–Ampère, courbes holomorphes et laminations, Geom. Funct. Anal.7 (3) (1997) 496-534. Zbl0885.32013
  11. [11] Poznjak È.G, Regular realization in the large of two-dimensional metrics of negative curvature, Dokl. Akad. Nauk SSSR170 (1966) 786-789. Zbl0168.19501MR205204
  12. [12] Poznyak È.G, Shikin E.V, Small parameters in the theory of isometric imbeddings of two-dimensional Riemannian manifolds in Euclidean spaces, in: Some Questions of Differential Geometry in the Large, Amer. Math. Soc, Providence, RI, 1996, pp. 151-192. Zbl0862.53004MR1406844
  13. [13] Rozendorn E.R, An isolated point on a surface of negative curvature with a regular metric, Soviet Math.3 (1962) 473-477. Zbl0123.15502
  14. [14] Rozendorn E.R, Surfaces of negative curvature, in: Burago Yu.D, Zalgaller V.A (Eds.), Geometry III, Chapter II, Springer-Verlag, 1992, pp. 87-178, (Encyclopaedia of Mathematical Sciences, Vol. 48). Zbl0781.53007MR1306735
  15. [15] Schlenker J.-M, Surfaces convexes dans des espaces lorentziens à courbure constante, Comm. Anal. Geom.4 (1996) 285-331. Zbl0864.53016MR1393565
  16. [16] Schlenker J.-M, Complete surfaces with negative extrinsic curvature, Preprint, 1999, http://xxx.lanl.gov/abs/math.DG/9912101. 
  17. [17] Shikin E.V, The global isometric immersion in R3 of certain metrics of nonpositive curvature, Dokl. Akad. Nauk SSSR215 (1974) 61-63. Zbl0299.53038MR343218
  18. [18] Smyth B, Efimov's inequality and other inequalities in a sphere, in: Geometry and Topology of Submanifolds, IV (Leuven, 1991), World Sci. Publishing, River Edge, NJ, 1992, pp. 76-86. Zbl0839.53038MR1185718
  19. [19] Spivak M, A Comprehensive Introduction to Geometry, Vols. I–V, Publish or perish, 1970–1975. 
  20. [20] Smyth B, Xavier F, Efimov's theorem in dimension greater than two, Invent. Math.90 (1987) 443-450. Zbl0642.53007MR914845
  21. [21] Tunitskiĭ D.V, Global regular isometric embedding of two-dimensional metrics with nonpositive curvature, Mat. Sbornik183 (7) (1992) 65-80. Zbl0773.53001MR1186975

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.