Height pairings for algebraic cycles on abelian varieties

Klaus Künnemann

Annales scientifiques de l'École Normale Supérieure (2001)

  • Volume: 34, Issue: 4, page 503-523
  • ISSN: 0012-9593

How to cite

top

Künnemann, Klaus. "Height pairings for algebraic cycles on abelian varieties." Annales scientifiques de l'École Normale Supérieure 34.4 (2001): 503-523. <http://eudml.org/doc/82549>.

@article{Künnemann2001,
author = {Künnemann, Klaus},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {4},
pages = {503-523},
publisher = {Elsevier},
title = {Height pairings for algebraic cycles on abelian varieties},
url = {http://eudml.org/doc/82549},
volume = {34},
year = {2001},
}

TY - JOUR
AU - Künnemann, Klaus
TI - Height pairings for algebraic cycles on abelian varieties
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 4
SP - 503
EP - 523
LA - eng
UR - http://eudml.org/doc/82549
ER -

References

top
  1. [1] Beilinson A.A., Height pairings between algebraic cycles, in: Manin Yu.I. (Ed.), K-theory, Arithmetic and Geometry, Moscow 1984–86, Lect. Notes Math., 1289, Springer, Berlin, 1987, pp. 1-25, and Contemp. Math. 67 (1987) 1–24. Zbl0651.14002
  2. [2] Bloch S., Height pairings for algebraic cycles, J. Pure Appl. Algebra34 (1984) 119-145. Zbl0577.14004MR772054
  3. [3] Bloch S., Gillet H., Soulé C., Cycles on degenerate fibers, in: Arithmetic Geometry (Cortona, 1994), Sympos. Math. XXXVII, Cambridge Univ. Press, Cambridge, 1997, pp. 45-69. Zbl0955.14007MR1472491
  4. [4] Deligne P., La conjecture de Weil II, Publ. Math. I.H.E.S.52 (1981) 313-428. Zbl0456.14014MR601520
  5. [5] Faltings G., Chai C.-L., Degenerations of Abelian Varieties, Springer, Berlin, 1990. Zbl0744.14031MR1083353
  6. [6] Fulton W., MacPherson R., Sottile F., Sturmfels B., Intersection theory on spherical varieties, J. Algebraic Geometry4 (1995) 181-193. Zbl0819.14019MR1299008
  7. [7] Fulton W., Intersection Theory, Springer, Berlin, 1984. Zbl0541.14005MR732620
  8. [8] Fulton W., Introduction to Toric Varieties, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993. Zbl0813.14039MR1234037
  9. [9] Gillet H., Soulé C., Intersection theory using Adams operations, Invent. Math.90 (1987) 243-278. Zbl0632.14009MR910201
  10. [10] Gillet H., Soulé C., Arithmetic intersection theory, Publ. Math. I.H.E.S.72 (1990) 94-174. Zbl0741.14012MR1087394
  11. [11] Künnemann K., Higher Picard varieties and the height pairing, Amer. J. Math.118 (1996) 781-797. Zbl0876.14006MR1400059
  12. [12] Künnemann K., Projective regular models for abelian varieties, semi-stable reduction, and the height pairing, Duke Math. J.95 (1998) 161-212. Zbl0955.14017MR1646554
  13. [13] Künnemann K., The Kähler identity for bigraded Hodge–Lefschetz modules and its application in non-archimedean Arakelov geometry, J. Algebraic Geometry7 (1998) 651-672. Zbl0954.14017
  14. [14] Künnemann K., Algebraic cycles on toric fibrations over abelian varieties, Math. Z.232 (1999) 427-435. Zbl0956.14004MR1719702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.