Certain unipotent representations of finite Chevalley groups and Picard–Lefschetz monodromy

Akihiko Gyoja

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 3, page 437-444
  • ISSN: 0012-9593

How to cite

top

Gyoja, Akihiko. "Certain unipotent representations of finite Chevalley groups and Picard–Lefschetz monodromy." Annales scientifiques de l'École Normale Supérieure 35.3 (2002): 437-444. <http://eudml.org/doc/82577>.

@article{Gyoja2002,
author = {Gyoja, Akihiko},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {unipotent representations; unipotent characters; semisimple group schemes; prehomogeneous vector spaces; nilpotent orbits; relative invariants},
language = {eng},
number = {3},
pages = {437-444},
publisher = {Elsevier},
title = {Certain unipotent representations of finite Chevalley groups and Picard–Lefschetz monodromy},
url = {http://eudml.org/doc/82577},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Gyoja, Akihiko
TI - Certain unipotent representations of finite Chevalley groups and Picard–Lefschetz monodromy
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 3
SP - 437
EP - 444
LA - eng
KW - unipotent representations; unipotent characters; semisimple group schemes; prehomogeneous vector spaces; nilpotent orbits; relative invariants
UR - http://eudml.org/doc/82577
ER -

References

top
  1. [1] Bernstein I.N., The analytic continuation of generalized functions with respect to a parameter, Funct. Anal. Appl.6 (1972) 273-285. Zbl0282.46038MR320735
  2. [2] Deligne P., Le formalisme des cycles évanescents, in: Lecture Notes in Math., 240, Springer, 1973, pp. 82-115. Zbl0266.14008
  3. [3] Gyoja A., On the existence of a W-graph for an irreducible representation of a Coxeter group, J. Algebra86 (1984) 422-438. Zbl0537.20020MR732258
  4. [4] Gyoja A., Theory of prehomogeneous vector spaces without regularity condition, Publ. RIMS27 (1991) 861-922. Zbl0773.14025MR1145669
  5. [5] Gyoja A., Highest weight modules and b-functions of semi-invariants, Publ. RIMS30 (1994) 353-400, Kyoto University. Zbl0821.22006MR1299522
  6. [6] Gyoja A., Modular representation theory over a ring of higher dimension with applications to Hecke algebras, J. Algebra174 (1995) 553-572. Zbl0833.20054MR1334224
  7. [7] Gyoja A., A theorem of Chevalley type for prehomogeneous vector spaces, J. Math. Soc. Japan48 (1996) 161-167. Zbl0846.17006MR1361553
  8. [8] Gyoja A., Lectures on prehomogeneous vector spaces, Lectures delivered at Nagoya University from October 20, 1998 until January 28, 1999. Zbl0940.14036
  9. [9] Kashiwara M., b-Functions and holonomic systems (Rationality of roots of b-functions), Invent. Math.38 (1976) 33-53. Zbl0354.35082MR430304
  10. [10] Kashiwara M., Vanishing cycle sheaves and holonomic sytems of differential equations, in: Lecture Notes in Math., 1016, 1983, pp. 134-142. Zbl0566.32022MR726425
  11. [11] Lusztig G., On a theorem of Benson and Curtis, J. Algebra71 (1981). Zbl0465.20042MR630610
  12. [12] Lusztig G., Characters of reductive groups over a finite field, Ann. Math. Studies107 (1984), Princeton University Press. Zbl0556.20033MR742472
  13. [13] Lusztig G., Intersection cohomology complexes on a reductive group, Invent. Math.75 (1984) 205-272. Zbl0547.20032MR732546
  14. [14] Lusztig G., Introduction to character sheaves, Proc. Symp. Pure Math.47 (1987) 165-179. Zbl0649.20038MR933358
  15. [15] Malgrange B., Polynôme de Bernstein–Sato et cohomologie évanescente, Astérisque101–102–103 (1983) 243-267. Zbl0528.32007MR737934
  16. [16] Springer T.A., Steinberg R., Conjugacy classes, in: Lecture Notes in Math., 131, Springer, 1970, pp. 167-266. Zbl0249.20024MR268192
  17. [17] Suga S., Highest weight modules associated with classical irreducible regular prehomogeneous vector spaces of commutative parabolic type, Osaka J. Math.28 (1991) 323-346. Zbl0758.17005MR1132169
  18. [18] Yamane H., Irreducible projective modules of the Hecke algebras of a finite Coxeter group, J. Algebra27 (1989) 373-384. Zbl0689.20039MR1028459

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.