Unramified cohomology of classifying varieties for classical simply connected groups

Alexander Merkurjev

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 3, page 445-476
  • ISSN: 0012-9593

How to cite

top

Merkurjev, Alexander. "Unramified cohomology of classifying varieties for classical simply connected groups." Annales scientifiques de l'École Normale Supérieure 35.3 (2002): 445-476. <http://eudml.org/doc/82578>.

@article{Merkurjev2002,
author = {Merkurjev, Alexander},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {third unramified Galois cohomology; classifying varieties; classical simply connected groups; principal homogeneous spaces},
language = {eng},
number = {3},
pages = {445-476},
publisher = {Elsevier},
title = {Unramified cohomology of classifying varieties for classical simply connected groups},
url = {http://eudml.org/doc/82578},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Merkurjev, Alexander
TI - Unramified cohomology of classifying varieties for classical simply connected groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 3
SP - 445
EP - 476
LA - eng
KW - third unramified Galois cohomology; classifying varieties; classical simply connected groups; principal homogeneous spaces
UR - http://eudml.org/doc/82578
ER -

References

top
  1. [1] Blanchet A., Function fields of generalized Brauer–Severy varieties, Comm. Algebra19 (1991) 97-118. Zbl0717.16014MR1092553
  2. [2] Bogomolov F.A., Brauer groups of the fields of invariants of algebraic groups, Mat. Sb.180 (2) (1989) 279-293. Zbl0759.14008MR993459
  3. [3] Bourbaki N., Groupes et Algèbres de Lie, Chap. 4, 5, 6, Masson, Paris, 1981. Zbl0483.22001MR647314
  4. [4] Colliot-Thélène J.-L., Sansuc J.-J., The rationality problem for fields of invariants under linear algebraic groups (with special regards to the Brauer group), Notes from the 1988 ELAM conference, Santiago de Chile, http://www.math.u-psud.fr/~colliot/liste-publi.html. 
  5. [5] Colliot-Thélène J.-L., Birational invariants purity, and the Gersten conjecture purity, in: Jacob W., Rosenberg A. (Eds.), Proceedings of the 1992 Summer Research Institute on Quadratic Forms and Division Algebras, Symposia Pure Math., 58.1, American Mathematical Society, Providence, RI, 1995, pp. 1-64. Zbl0834.14009MR1327280
  6. [6] Demazure M., Grothendieck A., Schémas et Groupes III (SGA 3, Tome III), Lect. Notes in Math., 153, Springer, Heidelberg, 1970. Zbl0212.52810MR274458
  7. [7] Esnault H., Kahn B., Levine M., Viehweg E., The Arason invariant and mod 2 algebraic cycles, J. Amer. Math. Soc.11 (1) (1998) 73-118. Zbl1025.11009MR1460391
  8. [8] Garibaldi R., Tignol J.-P., Wadsworth A., Galois cohomology of special orthogonal groups, Manuscripta Math.93 (2) (1997) 247-266. Zbl1055.11512MR1464368
  9. [9] Knus M.-A., Merkurjev A.S., Rost M., Tignol J.-P., The Book of Involutions, American Mathematical Society Colloquium Publications, 44, American Mathematical Society, Providence, RI, 1998. Zbl0955.16001MR1632779
  10. [10] Lam T.-Y., The Algebraic Theory of Quadratic Forms, Benjamin, Reading, MA, 1973. Zbl0259.10019MR396410
  11. [11] Merkurjev A.S., Invariants of algebraic groups, J. Reine Angew. Math.508 (1999) 127-156. Zbl0913.16010MR1676873
  12. [12] Merkurjev A.S., Panin I.A., Wadsworth A., Index reduction formulas for twisted flag varieties, II, 14 (2) (1998) 101-196. Zbl0918.16013MR1628279
  13. [13] Rost M., Chow groups with coefficients, Documenta Mathematica1 (1996) 319-393. Zbl0864.14002MR1418952
  14. [14] Saltman D., The Brauer group and the center of generic matrices, J. Algebra97 (1) (1985) 53-67. Zbl0586.13005MR812169
  15. [15] Saltman D., Invariant fields of linear groups and division algebras, in: Perspectives in Ring Theory (Antwerp, 1987), Kluwer Academic, 1988, pp. 279-297. Zbl0688.16020MR1048416
  16. [16] Saltman D., Brauer groups of invariant fields, geometrically negligible classes, an equivariant Chow group, and unramified H3, in: Jacob W., Rosenberg A. (Eds.), Proceedings of the 1992 Summer Research Institute on Quadratic Forms and Division Algebras, Symposia Pure Math., 58.1, American Mathematical Society, Providence, RI, 1995, pp. 189-246. Zbl0827.13003MR1327283
  17. [17] Saltman D., The Schur index and Moody's theorem, 7 (1993) 309-332. Zbl0801.16014MR1246280
  18. [18] Serre J.-P., Letter to M. Rost, Harvard, Dec. 3, 1992. 
  19. [19] Serre J.-P., Cohomologie galoisienne, Lect. Notes Math., 5, Springer-Verlag, Berlin, 1994. Zbl0812.12002MR1324577
  20. [20] Serre J.-P., Cohomologie galoisienne: progrès et problèmes, Séminaire Bourbaki, Vol. 1993/94, Astérisque (1995), no. 227, Exp. No. 783, 4, 229–257. Zbl0837.12003MR1321649
  21. [21] Tits J., Classification of algebraic semisimple groups, in: Borel A., Mostow G.D. (Eds.), Algebraic Groups and Discontinuous Subgroups, Proc. Symp. Pure Math., 9, 1966, pp. 33-62. Zbl0238.20052MR224710
  22. [22] Tits J., Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque, J. Reine Angew. Math.247 (1971) 196-220. Zbl0227.20015MR277536
  23. [23] Zariski O., Samuel P., Commutative Algebra. II, Graduate Texts in Mathematics, 29, Springer-Verlag, 1975. Zbl0313.13001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.