From the BGK model to the Navier–Stokes equations

Laure Saint-Raymond

Annales scientifiques de l'École Normale Supérieure (2003)

  • Volume: 36, Issue: 2, page 271-317
  • ISSN: 0012-9593

How to cite

top

Saint-Raymond, Laure. "From the BGK model to the Navier–Stokes equations." Annales scientifiques de l'École Normale Supérieure 36.2 (2003): 271-317. <http://eudml.org/doc/82602>.

@article{Saint2003,
author = {Saint-Raymond, Laure},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {hydrodynamic limits; local Maxwellian; entropy dissipation},
language = {eng},
number = {2},
pages = {271-317},
publisher = {Elsevier},
title = {From the BGK model to the Navier–Stokes equations},
url = {http://eudml.org/doc/82602},
volume = {36},
year = {2003},
}

TY - JOUR
AU - Saint-Raymond, Laure
TI - From the BGK model to the Navier–Stokes equations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 2
SP - 271
EP - 317
LA - eng
KW - hydrodynamic limits; local Maxwellian; entropy dissipation
UR - http://eudml.org/doc/82602
ER -

References

top
  1. [1] Arnold A., Markowich P., Toscani G., Unterreiter A., On logarithmic Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations, Comm. PDE26 (2001) 43-100. Zbl0982.35113MR1842428
  2. [2] Bhatnagar P., Gross E.P., Krook M., A model for collision processes in gases, Phys. Rev.94 (1954) 511. Zbl0055.23609
  3. [3] Bardos C., Golse F., Levermore C.D., Fluid dynamic limits of kinetic equations I. Formal derivations, J. Statis. Phys.63 (1991) 323-344. MR1115587
  4. [4] Bardos C., Golse F., Levermore C.D., Fluid dynamic limits of kinetic equations II. Convergence proofs for the Boltzmann equation, Comm. Pure Appl. Math.46 (5) (1993) 667-753. Zbl0817.76002MR1213991
  5. [5] Bardos C., Golse F., Levermore C.D., Acoustic and Stokes limits for the Boltzmann equation, C. R. Acad. Sci. Paris327 (3) (1998) 323-328. Zbl0918.35109MR1650310
  6. [6] Bouchut F., Golse F., Pulvirenti M., Kinetic Equations and Asymptotic Theory, Series in Applied Mathematics, 4, Gauthier-Villars, Paris, 2000. Zbl0979.82048MR2065070
  7. [7] Caflisch R., The fluid dynamic limit of the Boltzmann equation, Comm. Pure Appl. Math.33 (1980) 651-666. Zbl0424.76060MR586416
  8. [8] Cercignani C., The Boltzmann Equation and its Applications, Springer-Verlag, New York, 1988. Zbl0646.76001MR1313028
  9. [9] Cercignani C., Illner R., Pulvirenti M., The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, 106, Springer-Verlag, 1994. Zbl0813.76001MR1307620
  10. [10] Castella F., Perthame B., Estimations de Strichartz pour les équations de transport cinétique, C. R. Acad. Sci. Paris322 (6) (1996) 535-540. Zbl0848.35095MR1383431
  11. [11] DeMasi A., Esposito R., Lebowitz J., Incompressible Navier–Stokes and Euler limits of the Boltzmann equation, Comm. Pure Appl. Math.42 (1990) 1189-1214. Zbl0689.76024MR1029125
  12. [12] DiPerna R., Lions P., On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math.130 (2) (1991) 321-366. Zbl0698.45010MR1014927
  13. [13] Golse F., Levermore C.D., Stokes and Acoustic limits for the Boltzmann equation: convergence proofs, Comm. Pure Appl. Math.55 (3) (2002) 336-393. Zbl1044.76055MR1866367
  14. [14] Golse F., Lions P., Perthame B., Sentis R., Regularity of the moments of the solution of a transport equation, J. Funct. Anal.76 (1988) 110-125. Zbl0652.47031MR923047
  15. [15] Golse F., Saint-Raymond L., The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels, Inventiones Math., to appear. Zbl1060.76101MR2025302
  16. [16] Grenier E., Pseudo-differential energy estimates of singular perturbations, Comm. Pure Appl. Math.50 (9) (1997) 821-865. Zbl0884.35183MR1459589
  17. [17] Landau L., Lifshitz E., Course of Theoretical Physics, Vol. 6: Fluid Mechanics, Pergamon Press, Oxford, 1987. Zbl0655.76001MR961259
  18. [18] Leray J., Sur le mouvement d'un fluide visqueux emplissant l'espace, Acta Math.63 (1934) 193-248. MR1555394JFM60.0726.05
  19. [19] Lions P., Masmoudi N., Une approche locale de la limite incompressible, C. R. Acad. Sci. Paris329 (1999) 387-392. Zbl0937.35132MR1710123
  20. [20] Lions P., Masmoudi N., From Boltzmann equations to Navier–Stokes equations I, Archive Rat. Mech. Anal.158 (2001) 173-193. Zbl0987.76088MR1842343
  21. [21] Nishida T., Fluid dynamic limit of the nonlinear Boltzmann equation at the level of the compressible Euler equation, Comm. Math. Phys.61 (1978) 119-168. Zbl0381.76060MR503305
  22. [22] Perthame B., Global existence to the BGK model of Boltzmann equation, J. Differential Equations82 (1989) 191-205. Zbl0694.35134MR1023307
  23. [23] Philippi P., Brun R., Kinetic modeling of polyatomic gas mixture, Phys. A.105 (1981) 147. 
  24. [24] Quastel J., Yau H.-T., Lattice gases, large deviations, and the incompressible Navier–Stokes equations, Ann. of Math. (2)148 (1) (1998) 51-108. Zbl0919.35102MR1652971
  25. [25] Schochet S., Fast singular limits of Hyperbolic PDEs, J. Differential Equations114 (1994) 476-512. Zbl0838.35071MR1303036
  26. [26] Saint-Raymond L., Discrete time Navier–Stokes limit for the BGK Boltzmann equation, Comm. Partial Diff. Equations27 (2002) 149-184. Zbl1009.35071MR1886958
  27. [27] Saint-Raymond L., Incompressible hydrodynamic limits for a kinetic model of waves-particles interaction, Asympt. Anal.19 (2) (1999) 149-183. Zbl0927.35085MR1684038
  28. [28] Toscani G., Villani C., Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation, Comm. Math. Phys.203 (3) (1999) 667-706. Zbl0944.35066MR1700142
  29. [29] Welander P., Ark. Phys.7 (1954) 507. Zbl0057.23301MR62041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.