From the BGK model to the Navier–Stokes equations
Annales scientifiques de l'École Normale Supérieure (2003)
- Volume: 36, Issue: 2, page 271-317
- ISSN: 0012-9593
Access Full Article
topHow to cite
topSaint-Raymond, Laure. "From the BGK model to the Navier–Stokes equations." Annales scientifiques de l'École Normale Supérieure 36.2 (2003): 271-317. <http://eudml.org/doc/82602>.
@article{Saint2003,
author = {Saint-Raymond, Laure},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {hydrodynamic limits; local Maxwellian; entropy dissipation},
language = {eng},
number = {2},
pages = {271-317},
publisher = {Elsevier},
title = {From the BGK model to the Navier–Stokes equations},
url = {http://eudml.org/doc/82602},
volume = {36},
year = {2003},
}
TY - JOUR
AU - Saint-Raymond, Laure
TI - From the BGK model to the Navier–Stokes equations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 2
SP - 271
EP - 317
LA - eng
KW - hydrodynamic limits; local Maxwellian; entropy dissipation
UR - http://eudml.org/doc/82602
ER -
References
top- [1] Arnold A., Markowich P., Toscani G., Unterreiter A., On logarithmic Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations, Comm. PDE26 (2001) 43-100. Zbl0982.35113MR1842428
- [2] Bhatnagar P., Gross E.P., Krook M., A model for collision processes in gases, Phys. Rev.94 (1954) 511. Zbl0055.23609
- [3] Bardos C., Golse F., Levermore C.D., Fluid dynamic limits of kinetic equations I. Formal derivations, J. Statis. Phys.63 (1991) 323-344. MR1115587
- [4] Bardos C., Golse F., Levermore C.D., Fluid dynamic limits of kinetic equations II. Convergence proofs for the Boltzmann equation, Comm. Pure Appl. Math.46 (5) (1993) 667-753. Zbl0817.76002MR1213991
- [5] Bardos C., Golse F., Levermore C.D., Acoustic and Stokes limits for the Boltzmann equation, C. R. Acad. Sci. Paris327 (3) (1998) 323-328. Zbl0918.35109MR1650310
- [6] Bouchut F., Golse F., Pulvirenti M., Kinetic Equations and Asymptotic Theory, Series in Applied Mathematics, 4, Gauthier-Villars, Paris, 2000. Zbl0979.82048MR2065070
- [7] Caflisch R., The fluid dynamic limit of the Boltzmann equation, Comm. Pure Appl. Math.33 (1980) 651-666. Zbl0424.76060MR586416
- [8] Cercignani C., The Boltzmann Equation and its Applications, Springer-Verlag, New York, 1988. Zbl0646.76001MR1313028
- [9] Cercignani C., Illner R., Pulvirenti M., The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, 106, Springer-Verlag, 1994. Zbl0813.76001MR1307620
- [10] Castella F., Perthame B., Estimations de Strichartz pour les équations de transport cinétique, C. R. Acad. Sci. Paris322 (6) (1996) 535-540. Zbl0848.35095MR1383431
- [11] DeMasi A., Esposito R., Lebowitz J., Incompressible Navier–Stokes and Euler limits of the Boltzmann equation, Comm. Pure Appl. Math.42 (1990) 1189-1214. Zbl0689.76024MR1029125
- [12] DiPerna R., Lions P., On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math.130 (2) (1991) 321-366. Zbl0698.45010MR1014927
- [13] Golse F., Levermore C.D., Stokes and Acoustic limits for the Boltzmann equation: convergence proofs, Comm. Pure Appl. Math.55 (3) (2002) 336-393. Zbl1044.76055MR1866367
- [14] Golse F., Lions P., Perthame B., Sentis R., Regularity of the moments of the solution of a transport equation, J. Funct. Anal.76 (1988) 110-125. Zbl0652.47031MR923047
- [15] Golse F., Saint-Raymond L., The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels, Inventiones Math., to appear. Zbl1060.76101MR2025302
- [16] Grenier E., Pseudo-differential energy estimates of singular perturbations, Comm. Pure Appl. Math.50 (9) (1997) 821-865. Zbl0884.35183MR1459589
- [17] Landau L., Lifshitz E., Course of Theoretical Physics, Vol. 6: Fluid Mechanics, Pergamon Press, Oxford, 1987. Zbl0655.76001MR961259
- [18] Leray J., Sur le mouvement d'un fluide visqueux emplissant l'espace, Acta Math.63 (1934) 193-248. MR1555394JFM60.0726.05
- [19] Lions P., Masmoudi N., Une approche locale de la limite incompressible, C. R. Acad. Sci. Paris329 (1999) 387-392. Zbl0937.35132MR1710123
- [20] Lions P., Masmoudi N., From Boltzmann equations to Navier–Stokes equations I, Archive Rat. Mech. Anal.158 (2001) 173-193. Zbl0987.76088MR1842343
- [21] Nishida T., Fluid dynamic limit of the nonlinear Boltzmann equation at the level of the compressible Euler equation, Comm. Math. Phys.61 (1978) 119-168. Zbl0381.76060MR503305
- [22] Perthame B., Global existence to the BGK model of Boltzmann equation, J. Differential Equations82 (1989) 191-205. Zbl0694.35134MR1023307
- [23] Philippi P., Brun R., Kinetic modeling of polyatomic gas mixture, Phys. A.105 (1981) 147.
- [24] Quastel J., Yau H.-T., Lattice gases, large deviations, and the incompressible Navier–Stokes equations, Ann. of Math. (2)148 (1) (1998) 51-108. Zbl0919.35102MR1652971
- [25] Schochet S., Fast singular limits of Hyperbolic PDEs, J. Differential Equations114 (1994) 476-512. Zbl0838.35071MR1303036
- [26] Saint-Raymond L., Discrete time Navier–Stokes limit for the BGK Boltzmann equation, Comm. Partial Diff. Equations27 (2002) 149-184. Zbl1009.35071MR1886958
- [27] Saint-Raymond L., Incompressible hydrodynamic limits for a kinetic model of waves-particles interaction, Asympt. Anal.19 (2) (1999) 149-183. Zbl0927.35085MR1684038
- [28] Toscani G., Villani C., Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation, Comm. Math. Phys.203 (3) (1999) 667-706. Zbl0944.35066MR1700142
- [29] Welander P., Ark. Phys.7 (1954) 507. Zbl0057.23301MR62041
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.