Diagram algebras, Hecke algebras and decomposition numbers at roots of unity
Annales scientifiques de l'École Normale Supérieure (2003)
- Volume: 36, Issue: 4, page 479-524
- ISSN: 0012-9593
Access Full Article
topHow to cite
topGraham, J. J., and Lehrer, G. I.. "Diagram algebras, Hecke algebras and decomposition numbers at roots of unity." Annales scientifiques de l'École Normale Supérieure 36.4 (2003): 479-524. <http://eudml.org/doc/82608>.
@article{Graham2003,
author = {Graham, J. J., Lehrer, G. I.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {affine Temperley-Lieb algebras; extended affine Hecke algebras; standard modules; cellular algebras; cell modules},
language = {eng},
number = {4},
pages = {479-524},
publisher = {Elsevier},
title = {Diagram algebras, Hecke algebras and decomposition numbers at roots of unity},
url = {http://eudml.org/doc/82608},
volume = {36},
year = {2003},
}
TY - JOUR
AU - Graham, J. J.
AU - Lehrer, G. I.
TI - Diagram algebras, Hecke algebras and decomposition numbers at roots of unity
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 4
SP - 479
EP - 524
LA - eng
KW - affine Temperley-Lieb algebras; extended affine Hecke algebras; standard modules; cellular algebras; cell modules
UR - http://eudml.org/doc/82608
ER -
References
top- [1] Ariki S., On the decomposition numbers of the Hecke algebra of G(m,1,n), J. Math. Kyoto Univ.36 (4) (1996) 789-808. Zbl0888.20011MR1443748
- [2] Ariki S., Mathas A., The number of simple modules of the Hecke algebras of type G(r,1,n), Math. Z., to appear. Zbl0955.20003MR1750939
- [3] Benson D.J., Representations and Cohomology. I. Basic Representation Theory of Finite Groups and Associative Algebras, Cambridge Stud. Adv. Math., 30, Cambridge University Press, Cambridge, 1998. Zbl0908.20001MR1644252
- [4] Bernstein I.N., Zelevinsky A.V., Induced representations of reductive p-adic groups, Ann. Sci. Éc. Norm. Sup. (4)10 (1977) 441-472. Zbl0412.22015MR579172
- [5] Chriss N., Ginzburg V., Representation Theory and Complex Geometry, Birkhäuser Boston, Boston, MA, 1997. Zbl0879.22001MR1433132
- [6] Cox A., Graham J.J., Martin P., The blob algebra in positive characteristic, Preprint, 2001. Zbl1144.20300MR1995129
- [7] Deligne P., Les immeubles des groupes de tresses généralisés, Invent. Math.17 (1972) 273-302. Zbl0238.20034MR422673
- [8] Fan C.K., Green R.M., On the affine Temperley–Lieb algebras, J. London Math. Soc. (2)60 (1999) 366-380. Zbl0940.20010MR1724798
- [9] Ginzburg V., Lagrangian construction of representations of Hecke algebras, Adv. in Math.63 (1987) 100-112. Zbl0625.22012MR871082
- [10] Grojnowski I., Representations of affine Hecke algebras (and affine quantum GLn) at roots of unity, Internat. Math. Res. Notices5 (1994). Zbl0819.17009MR1270135
- [11] Green R.M., On representations of affine Temperley–Lieb algebras, in: Algebras and Modules II, CMS Conference Proceedings, 24, American Math. Society, Providence, RI, 1998, pp. 245-261. Zbl0940.20049MR1648630
- [12] Geck M., Lambropoulou S., Markov traces and knot invariants related to Iwahori–Hecke algebras of type B, J. Reine Angew. Math.482 (1997) 191-213. Zbl0872.57012MR1427662
- [13] Graham J.J., Lehrer G.I., Cellular algebras, Invent. Math.123 (1996) 1-34. Zbl0853.20029MR1376244
- [14] Graham J.J., Lehrer G.I., The representation theory of affine Temperley–Lieb algebras, Enseign. Math.44 (1998). Zbl0964.20002MR1659204
- [15] Graham J.J., Lehrer G.I., The two-step nilpotent representations of the extended affine Hecke algebra of type A, Compositio Math.133 (2002) 173-197. Zbl1061.20004MR1923581
- [16] Jones V.F.R., A quotient of the affine Hecke algebra in the Brauer algebra, Enseign. Math.40 (1994) 313-344. Zbl0852.20035MR1309131
- [17] Jones V.F.R., Hecke algebra representations of braid groups and link polynomials, Ann. of Math.126 (1987) 335-388. Zbl0631.57005MR908150
- [18] Jones V.F.R., Planar algebras, Preprint on server, 2001.
- [19] Kazhdan D., Lusztig G., Proof of the Deligne–Langlands conjecture for Hecke algebras, Invent. Math.87 (1987) 153-215. Zbl0613.22004MR862716
- [20] Lascoux A., Leclerc B., Thibon J.-Y., Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys.181 (1996) 205-263. Zbl0874.17009MR1410572
- [21] Leclerc B., Thibon J.-Y., Vasserot E., Zelevinsky's involution at roots of unity, J. Reine Angew. Math.513 (1999) 33-51. Zbl0949.17006MR1713318
- [22] Lusztig G., Some examples of square integrable representations of semisimple p-adic groups, Trans. Amer. Math. Soc.277 (1983) 623-653. Zbl0526.22015MR694380
- [23] Lusztig G., Notes on affine Hecke algebras, Preprint, MIT, 2000. MR1979925
- [24] Lusztig G., Affine Hecke algebras and their graded version, J. Amer. Math. Soc.2 (1989) 599-635. Zbl0715.22020MR991016
- [25] Martin P.P., Woodcock D., On the structure of the blob algebra, J. Algebra225 (2000) 957-988. Zbl0947.16006MR1741573
- [26] Martin P., Saleur H., The blob algebra and the periodic Temperley–Lieb algebra, Lett. Math. Phys.30 (1994) 189-206. Zbl0799.16005MR1267001
- [27] Nguyen V.D., The fundamental groups of the spaces of regular orbits of the affine Weyl groups, Topology22 (1983) 425-435. Zbl0524.57015MR715248
- [28] Rogawski J.D., On modules over the Hecke algebra of a p-adic group, Invent. Math.79 (1985) 443-465. Zbl0579.20037MR782228
- [29] tom Dieck T., Symmetrische Brücken und Knotentheorie zu den Dynkin-Diagrammen vom Typ B, J. Reine Angew. Math.451 (1994) 71-88. Zbl0791.57008MR1277295
- [30] Xi N., Representations of Affine Hecke Algebras, Lecture Notes in Math., 1587, Springer-Verlag, Berlin, 1994. Zbl0817.20051MR1320509
- [31] Zelevinsky A.V., Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n), Ann. Sci. Éc. Norm. Sup.13 (1980) 165-210. Zbl0441.22014MR584084
- [32] Zelevinsky A.V., The p-adic analogue of the Kazhdan–Lusztig conjecture, Funktsional. Anal. i Prilozhen.15 (1981) 9-21, (Russian). Zbl0463.22013MR617466
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.