Graded Lie algebras with finite polydepth

Yves Felix; Stephen Halperin; Jean-Claude Thomas

Annales scientifiques de l'École Normale Supérieure (2003)

  • Volume: 36, Issue: 5, page 793-804
  • ISSN: 0012-9593

How to cite

top

Felix, Yves, Halperin, Stephen, and Thomas, Jean-Claude. "Graded Lie algebras with finite polydepth." Annales scientifiques de l'École Normale Supérieure 36.5 (2003): 793-804. <http://eudml.org/doc/82618>.

@article{Felix2003,
author = {Felix, Yves, Halperin, Stephen, Thomas, Jean-Claude},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {graded Lie algebra; polynomial depth; polynomial bound; polynomial growth},
language = {eng},
number = {5},
pages = {793-804},
publisher = {Elsevier},
title = {Graded Lie algebras with finite polydepth},
url = {http://eudml.org/doc/82618},
volume = {36},
year = {2003},
}

TY - JOUR
AU - Felix, Yves
AU - Halperin, Stephen
AU - Thomas, Jean-Claude
TI - Graded Lie algebras with finite polydepth
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 5
SP - 793
EP - 804
LA - eng
KW - graded Lie algebra; polynomial depth; polynomial bound; polynomial growth
UR - http://eudml.org/doc/82618
ER -

References

top
  1. [1] Felix Y., Halperin S., Lemaire J.-M., Thomas J.-C., Mod p loop space homology, Inventiones math.95 (1989) 247-262. Zbl0667.55007MR974903
  2. [2] Felix Y., Halperin S., Jacobson C., Löfwall C., Thomas J.-C., The radical of the homotopy Lie algebra, Amer. J. Math.110 (1988) 301-322. Zbl0654.55011MR935009
  3. [3] Felix Y., Halperin S., Thomas J.-C., Lie algebras of polynomial growth, J. London Math. Soc.43 (1991) 556-566. Zbl0755.57019MR1113393
  4. [4] Felix Y., Halperin S., Thomas J.-C., Hopf algebras of polynomial growth, J. Algebra125 (1989) 408-417. Zbl0676.16008MR1018954
  5. [5] Felix Y., Halperin S., Thomas J.-C., Engel elements in the homotopy Lie algebra, J. Algebra144 (1991) 67-78. Zbl0737.17011MR1136895
  6. [6] Felix Y., Halperin S., Thomas J.-C., The category of a map and the grade of a module, Israel J. Math.78 (1992) 177-196. Zbl0773.55003MR1194965
  7. [7] Felix Y., Halperin S., Thomas J.-C., Growth and Lie brackets in the homotopy Lie algebra, in: The Roos Festschrift, vol. 1, Homology Homotopy Appl. 4, no. 2, part 1, 2002, pp. 219-225. Zbl1006.55008MR1918190
  8. [8] Halperin S., Universal enveloping algebra and loop space homology, J. Pure Appl. Algebra83 (1992) 237-282. Zbl0769.57025MR1194839
  9. [9] Koszul J.-L., Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France78 (1950) 65-127. Zbl0039.02901MR36511
  10. [10] Milnor J.W., Moore J.C., On the structure of Hopf algebras, Ann. Math.81 (1965) 211-264. Zbl0163.28202MR174052

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.