Graded Lie algebras with finite polydepth
Yves Felix; Stephen Halperin; Jean-Claude Thomas
Annales scientifiques de l'École Normale Supérieure (2003)
- Volume: 36, Issue: 5, page 793-804
- ISSN: 0012-9593
Access Full Article
topHow to cite
topFelix, Yves, Halperin, Stephen, and Thomas, Jean-Claude. "Graded Lie algebras with finite polydepth." Annales scientifiques de l'École Normale Supérieure 36.5 (2003): 793-804. <http://eudml.org/doc/82618>.
@article{Felix2003,
author = {Felix, Yves, Halperin, Stephen, Thomas, Jean-Claude},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {graded Lie algebra; polynomial depth; polynomial bound; polynomial growth},
language = {eng},
number = {5},
pages = {793-804},
publisher = {Elsevier},
title = {Graded Lie algebras with finite polydepth},
url = {http://eudml.org/doc/82618},
volume = {36},
year = {2003},
}
TY - JOUR
AU - Felix, Yves
AU - Halperin, Stephen
AU - Thomas, Jean-Claude
TI - Graded Lie algebras with finite polydepth
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 5
SP - 793
EP - 804
LA - eng
KW - graded Lie algebra; polynomial depth; polynomial bound; polynomial growth
UR - http://eudml.org/doc/82618
ER -
References
top- [1] Felix Y., Halperin S., Lemaire J.-M., Thomas J.-C., Mod p loop space homology, Inventiones math.95 (1989) 247-262. Zbl0667.55007MR974903
- [2] Felix Y., Halperin S., Jacobson C., Löfwall C., Thomas J.-C., The radical of the homotopy Lie algebra, Amer. J. Math.110 (1988) 301-322. Zbl0654.55011MR935009
- [3] Felix Y., Halperin S., Thomas J.-C., Lie algebras of polynomial growth, J. London Math. Soc.43 (1991) 556-566. Zbl0755.57019MR1113393
- [4] Felix Y., Halperin S., Thomas J.-C., Hopf algebras of polynomial growth, J. Algebra125 (1989) 408-417. Zbl0676.16008MR1018954
- [5] Felix Y., Halperin S., Thomas J.-C., Engel elements in the homotopy Lie algebra, J. Algebra144 (1991) 67-78. Zbl0737.17011MR1136895
- [6] Felix Y., Halperin S., Thomas J.-C., The category of a map and the grade of a module, Israel J. Math.78 (1992) 177-196. Zbl0773.55003MR1194965
- [7] Felix Y., Halperin S., Thomas J.-C., Growth and Lie brackets in the homotopy Lie algebra, in: The Roos Festschrift, vol. 1, Homology Homotopy Appl. 4, no. 2, part 1, 2002, pp. 219-225. Zbl1006.55008MR1918190
- [8] Halperin S., Universal enveloping algebra and loop space homology, J. Pure Appl. Algebra83 (1992) 237-282. Zbl0769.57025MR1194839
- [9] Koszul J.-L., Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France78 (1950) 65-127. Zbl0039.02901MR36511
- [10] Milnor J.W., Moore J.C., On the structure of Hopf algebras, Ann. Math.81 (1965) 211-264. Zbl0163.28202MR174052
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.