On the zero set of semi-invariants for quivers

Christine Riedtmann; Grzegorz Zwara

Annales scientifiques de l'École Normale Supérieure (2003)

  • Volume: 36, Issue: 6, page 969-976
  • ISSN: 0012-9593

How to cite

top

Riedtmann, Christine, and Zwara, Grzegorz. "On the zero set of semi-invariants for quivers." Annales scientifiques de l'École Normale Supérieure 36.6 (2003): 969-976. <http://eudml.org/doc/82623>.

@article{Riedtmann2003,
author = {Riedtmann, Christine, Zwara, Grzegorz},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {semi-invariants of quivers; complete intersections; representations of quivers; prehomogeneous dimension vectors; algebras of semi-invariant functions},
language = {eng},
number = {6},
pages = {969-976},
publisher = {Elsevier},
title = {On the zero set of semi-invariants for quivers},
url = {http://eudml.org/doc/82623},
volume = {36},
year = {2003},
}

TY - JOUR
AU - Riedtmann, Christine
AU - Zwara, Grzegorz
TI - On the zero set of semi-invariants for quivers
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 6
SP - 969
EP - 976
LA - eng
KW - semi-invariants of quivers; complete intersections; representations of quivers; prehomogeneous dimension vectors; algebras of semi-invariant functions
UR - http://eudml.org/doc/82623
ER -

References

top
  1. [1] Chang C., Weyman J., Representations of quivers with free module of covariants, preprint. Zbl1064.16014MR2067189
  2. [2] Gabriel P., Représentations indécomposables, in: Sém. Bourbaki (1973/74), exp. n. 444, Lecture Notes in Math., vol. 431, 1975, pp. 143-169. Zbl0335.17005MR485996
  3. [3] Kraft H., Geometrische Methoden in der Invariantentheorie, Vieweg Verlag, 1984. Zbl0569.14003MR768181
  4. [4] Littelmann P., Koreguläre und äquidimensionale Darstellungen, J. Algebra123 (1989) 193-222. Zbl0688.14042MR1000484
  5. [5] Popov V.L., Representations with a free module of covariants, Funct. Anal. Appl.10 (1977) 242-244. Zbl0365.20053MR417197
  6. [6] Ringel C.M., The rational invariants of tame quivers, Invent. Math.58 (1980) 217-239. Zbl0433.15009MR571574
  7. [7] Ringel C.M., Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., vol. 1099, Springer Verlag, 1984. Zbl0546.16013MR774589
  8. [8] Sato M., Kimura T., A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya J. Math.65 (1977) 1-155. Zbl0321.14030MR430336
  9. [9] Schofield A., Semi-invariants of quivers, J. London Math. Soc.43 (1991) 385-395. Zbl0779.16005MR1113382
  10. [10] Schwarz G.W., Representations of simple Lie groups with regular ring of invariants, Invent. Math.49 (1978) 167-191. Zbl0391.20032MR511189
  11. [11] Schwarz G.W., Representations of simple Lie groups with a free module of covariants, Invent. Math.50 (1978) 1-12. Zbl0391.20033MR516601
  12. [12] Schwarz G.W., Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math.51 (1980) 37-135. Zbl0449.57009MR573821

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.