On the zero set of semi-invariants for quivers
Christine Riedtmann; Grzegorz Zwara
Annales scientifiques de l'École Normale Supérieure (2003)
- Volume: 36, Issue: 6, page 969-976
- ISSN: 0012-9593
Access Full Article
topHow to cite
topRiedtmann, Christine, and Zwara, Grzegorz. "On the zero set of semi-invariants for quivers." Annales scientifiques de l'École Normale Supérieure 36.6 (2003): 969-976. <http://eudml.org/doc/82623>.
@article{Riedtmann2003,
author = {Riedtmann, Christine, Zwara, Grzegorz},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {semi-invariants of quivers; complete intersections; representations of quivers; prehomogeneous dimension vectors; algebras of semi-invariant functions},
language = {eng},
number = {6},
pages = {969-976},
publisher = {Elsevier},
title = {On the zero set of semi-invariants for quivers},
url = {http://eudml.org/doc/82623},
volume = {36},
year = {2003},
}
TY - JOUR
AU - Riedtmann, Christine
AU - Zwara, Grzegorz
TI - On the zero set of semi-invariants for quivers
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 6
SP - 969
EP - 976
LA - eng
KW - semi-invariants of quivers; complete intersections; representations of quivers; prehomogeneous dimension vectors; algebras of semi-invariant functions
UR - http://eudml.org/doc/82623
ER -
References
top- [1] Chang C., Weyman J., Representations of quivers with free module of covariants, preprint. Zbl1064.16014MR2067189
- [2] Gabriel P., Représentations indécomposables, in: Sém. Bourbaki (1973/74), exp. n. 444, Lecture Notes in Math., vol. 431, 1975, pp. 143-169. Zbl0335.17005MR485996
- [3] Kraft H., Geometrische Methoden in der Invariantentheorie, Vieweg Verlag, 1984. Zbl0569.14003MR768181
- [4] Littelmann P., Koreguläre und äquidimensionale Darstellungen, J. Algebra123 (1989) 193-222. Zbl0688.14042MR1000484
- [5] Popov V.L., Representations with a free module of covariants, Funct. Anal. Appl.10 (1977) 242-244. Zbl0365.20053MR417197
- [6] Ringel C.M., The rational invariants of tame quivers, Invent. Math.58 (1980) 217-239. Zbl0433.15009MR571574
- [7] Ringel C.M., Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., vol. 1099, Springer Verlag, 1984. Zbl0546.16013MR774589
- [8] Sato M., Kimura T., A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya J. Math.65 (1977) 1-155. Zbl0321.14030MR430336
- [9] Schofield A., Semi-invariants of quivers, J. London Math. Soc.43 (1991) 385-395. Zbl0779.16005MR1113382
- [10] Schwarz G.W., Representations of simple Lie groups with regular ring of invariants, Invent. Math.49 (1978) 167-191. Zbl0391.20032MR511189
- [11] Schwarz G.W., Representations of simple Lie groups with a free module of covariants, Invent. Math.50 (1978) 1-12. Zbl0391.20033MR516601
- [12] Schwarz G.W., Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math.51 (1980) 37-135. Zbl0449.57009MR573821
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.