The geodesic hypothesis and non-topological solitons on pseudo-riemannian manifolds
Annales scientifiques de l'École Normale Supérieure (2004)
- Volume: 37, Issue: 2, page 312-362
- ISSN: 0012-9593
Access Full Article
topHow to cite
topStuart, David M. A.. "The geodesic hypothesis and non-topological solitons on pseudo-riemannian manifolds." Annales scientifiques de l'École Normale Supérieure 37.2 (2004): 312-362. <http://eudml.org/doc/82633>.
@article{Stuart2004,
author = {Stuart, David M. A.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {semi-linear wave equation; non-topological solitons; geodesics},
language = {eng},
number = {2},
pages = {312-362},
publisher = {Elsevier},
title = {The geodesic hypothesis and non-topological solitons on pseudo-riemannian manifolds},
url = {http://eudml.org/doc/82633},
volume = {37},
year = {2004},
}
TY - JOUR
AU - Stuart, David M. A.
TI - The geodesic hypothesis and non-topological solitons on pseudo-riemannian manifolds
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 2
SP - 312
EP - 362
LA - eng
KW - semi-linear wave equation; non-topological solitons; geodesics
UR - http://eudml.org/doc/82633
ER -
References
top- [1] Anderson D.L.T., Stability of time-dependent particle-like solutions in nonlinear field theories, II, J. Math. Phys.12 (1971) 945-952.
- [2] Berestycki H., Lions P.-L., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rat. Mech. Anal.82 (1983) 313-345. Zbl0533.35029MR695535
- [3] Berestycki H., Lions P.-L., Peletier L., An ODE approach to existence of positive solutions for semilinear problems in Rn, Indiana Univ. Math. J.30 (1983) 141-157. Zbl0522.35036
- [4] Bronski J., Jerrard R., Soliton dynamics in a potential, Math. Res. Lett.7 (2000) 329-342. Zbl0955.35067MR1764326
- [5] Coffman C.V., Uniqueness of the ground state solution for Δu−u+u3=0 and a variational characterization of other solutions, Arch. Rat. Mech. Anal.46 (1972) 81-95. Zbl0249.35029
- [6] Folland G.B., Introduction to Partial Differential Equations, Princeton University Press, Princeton, NJ, 1995. Zbl0841.35001MR1357411
- [7] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal.74 (1987) 160-197. Zbl0656.35122MR901236
- [8] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry, II, J. Funct. Anal.94 (1990) 308-348. Zbl0711.58013MR1081647
- [9] Keraani S., Semiclassical limit of a class of Schrödinger equations with potential, Comm. Partial Differential Equations27 (2002) 693-704. Zbl0998.35052MR1900559
- [10] Lee T.D., Particle Physics and Introduction to Field Theory, Harwood, Chur, 1984.
- [11] Manasse F., Misner C., Fermi normal coordinates and some basic concepts in differential geometry, J. Math. Physics4 (1963) 735-745. Zbl0118.22903MR155665
- [12] Marsden J., Lectures on Mechanics, LMS Lecture Note Series, vol. 174, LMS, Cambridge, 1992. Zbl0744.70004MR1171218
- [13] Mcleod K., Uniqueness of positive radial solutions of Δu+f(u)=0 in Rn, Trans. Amer. Math. Soc.339 (1993) 495-505. Zbl0804.35034
- [14] Misner C.W., Thorne K.S., Wheeler J.A., Gravitation, Freeman, San Francisco, 1973. MR418833
- [15] Peletier L., Serrin J., Uniqueness of positive solutions of semilinear equations in Rn, Arch. Rat. Mech. Anal.81 (2) (1983) 181-197. Zbl0516.35031MR682268
- [16] Shatah J., Stable standing waves of nonlinear Klein–Gordon equations, Comm. Math. Phys.91 (1983) 313-327. Zbl0539.35067MR723756
- [17] Shatah J., Strauss W., Instability of nonlinear bound states, Comm. Math. Phys.100 (1985) 173-190. Zbl0603.35007MR804458
- [18] Strauss W., Existence of solitary waves in higher dimensions, Comm. Math. Phys.55 (1977) 149-162. Zbl0356.35028MR454365
- [19] Strauss W., Nonlinear Wave Equations, AMS, Providence, RI, 1989. Zbl0714.35003MR1032250
- [20] Stuart D., Solitons on pseudo-Riemannian manifolds I, Comm. PDE1815–1838 (1998) 149-191. Zbl0935.35143MR1641729
- [21] Stuart D.M.A., Geodesics and the Einstein nonlinear wave system, University of Cambridge preprint. Zbl1072.58021MR2059135
- [22] Stuart D.M.A., Solitons on pseudo-Riemannian manifolds: stability and motion, Electron. Res. Announc. Amer. Math. Soc.6 (2000) 75-89. Zbl0959.58038MR1783091
- [23] Stuart D.M.A., Modulational approach to stability of non-topological solitons in semilinear wave equations, J. Math. Pures Appl.80 (1) (2001) 51-83. Zbl1158.35389MR1810509
- [24] Stuart D.M.A., Geodesics and the Einstein-nonlinear wave system, C. R. Acad. Sci. Paris Ser. I336 (2003) 615-618. Zbl1038.35139MR1981480
- [25] Tataru D., Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients II, Amer. J. Math.123 (3) (2001) 385-423. Zbl0988.35037MR1833146
- [26] Weinberg S., Gravitation and Cosmology, Wiley, New York, 1972.
- [27] Weinstein M.I., Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys.87 (4) (1983) 567-576. Zbl0527.35023MR691044
- [28] Weinstein M.I., Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal.16 (1985) 472-491. Zbl0583.35028MR783974
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.