Holomorphic one-forms on varieties of general type

Christopher D. Hacon; Sándor J. Kovács

Annales scientifiques de l'École Normale Supérieure (2005)

  • Volume: 38, Issue: 4, page 599-607
  • ISSN: 0012-9593

How to cite

top

Hacon, Christopher D., and Kovács, Sándor J.. "Holomorphic one-forms on varieties of general type." Annales scientifiques de l'École Normale Supérieure 38.4 (2005): 599-607. <http://eudml.org/doc/82669>.

@article{Hacon2005,
author = {Hacon, Christopher D., Kovács, Sándor J.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {holomorphic one-form; differential form},
language = {eng},
number = {4},
pages = {599-607},
publisher = {Elsevier},
title = {Holomorphic one-forms on varieties of general type},
url = {http://eudml.org/doc/82669},
volume = {38},
year = {2005},
}

TY - JOUR
AU - Hacon, Christopher D.
AU - Kovács, Sándor J.
TI - Holomorphic one-forms on varieties of general type
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 4
SP - 599
EP - 607
LA - eng
KW - holomorphic one-form; differential form
UR - http://eudml.org/doc/82669
ER -

References

top
  1. [1] Akyıldız E., Carrell J.B., Zeros of holomorphic vector fields and the Gysin homomorphism, in: Singularities, Part 1, Arcata, CA, 1981, Proc. Sympos. Pure Math., vol. 40, American Mathematical Society, Providence RI, 1983, pp. 47-54, MR713044 (85c:32020). Zbl0522.55015
  2. [2] Akyıldız E., Carrell J.B., Lieberman D.I., Zeros of holomorphic vector fields on singular spaces and intersection rings of Schubert varieties, Compositio Math.57 (2) (1986) 237-248, MR827353 (87j:32086). Zbl0613.14035
  3. [3] Akyıldız E., Carrell J.B., Lieberman D.I., Sommese A.J., On the graded rings associated to holomorphic vector fields with exactly one zero, in: Singularities, Part 1, Arcata, CA, 1981, Proc. Sympos. Pure Math., vol. 40, American Mathematical Society, Providence, RI, 1983, pp. 55-56, MR713045 (84i:14029). Zbl0523.57031
  4. [4] Baum P., Bott R., On the zeros of meromorphic vector-fields, in: Essays on Topology and Related Topics, Mémoires dédiés à Georges de Rham, Springer, New York, 1970, pp. 29-47, MR0261635 (41 #6248). Zbl0193.52201MR261635
  5. [5] Baum P., Bott R., Singularities of holomorphic foliations, J. Differential Geom.7 (1972) 279-342, MR0377923 (51 #14092). Zbl0268.57011MR377923
  6. [6] Bott R., Vector fields and characteristic numbers, Michigan Math. J.14 (1967) 231-244, MR0211416 (35 #2297). Zbl0145.43801MR211416
  7. [7] Carrell J.B., Holomorphic one forms and characteristic numbers, Topology13 (1974) 225-228, MR0348147 (50 #645). Zbl0305.32016MR348147
  8. [8] Carrell J., Howard A., Kosniowski C., Holomorphic vector fields on complex surfaces, Math. Ann.204 (1973) 73-81, MR0372262 (51 #8478). Zbl0242.14008MR372262
  9. [9] Carrell J.B., Lieberman D.I., Holomorphic vector fields and Kaehler manifolds, Invent. Math.21 (1973) 303-309, MR0326010 (48 #4356). Zbl0253.32017MR326010
  10. [10] Carrell J.B., Lieberman D.I., Vector fields and Chern numbers, Math. Ann.225 (3) (1977) 263-273, MR0435456 (55 #8416). Zbl0365.32020MR435456
  11. [11] Du Bois P., Complexe de de Rham filtré d'une variété singulière, Bull. Soc. Math. France109 (1) (1981) 41-81, MR613848 (82j:14006). Zbl0465.14009MR613848
  12. [12] Elkik R., Singularités rationnelles et déformations, Invent. Math.47 (2) (1978) 139-147, MR501926 (80c:14004). Zbl0363.14002MR501926
  13. [13] Elkik R., Rationalité des singularités canoniques, Invent. Math.64 (1) (1981) 1-6, MR621766 (83a:14003). Zbl0498.14002MR621766
  14. [14] Fulton W., Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 2, Springer-Verlag, Berlin, 1984, MR732620 (85k:14004). Zbl0541.14005MR732620
  15. [15] Griffiths P., Harris J., Algebraic geometry and local differential geometry, Ann. Sci. École Norm. Sup. (4)12 (3) (1979) 355-452, MR559347 (81k:53004). Zbl0426.14019MR559347
  16. [16] Green M., Lazarsfeld R., Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math.90 (2) (1987) 389-407, MR910207 (89b:32025). Zbl0659.14007MR910207
  17. [17] Guillén F., Navarro Aznar V., Pascual Gainza P., Puerta F., Hyperrésolutions cubiques et descente cohomologique, Lecture Notes in Mathematics, vol. 1335, Springer, Berlin, 1988, Papers from the Seminar on Hodge–Deligne Theory held in Barcelona, 1982, MR972983 (90a:14024). Zbl0638.00011MR972983
  18. [18] Hartshorne R., Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer, New York, 1977, MR0463157 (57 #3116). Zbl0367.14001MR463157
  19. [19] Kawamata Y., Minimal models and the Kodaira dimension of algebraic fiber spaces, J. reine angew. Math.363 (1985) 1-46, MR814013 (87a:14013). Zbl0589.14014MR814013
  20. [20] Kollár J., Mori S., Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998, With the collaboration of C.H. Clemens and A. Corti, Translated from the 1998 Japanese original, MR1658959 (2000b:14018). Zbl0926.14003MR1658959
  21. [21] Kovács S.J., Families over a base with a birationally nef tangent bundle, Math. Ann.308 (2) (1997) 347-359, MR1464907 (98h:14039). Zbl0922.14024MR1464907
  22. [22] Kovács S.J., A characterization of rational singularities, Duke Math. J.102 (2) (2000) 187-191, MR1749436 (2002b:14005). Zbl0973.14001MR1749436
  23. [23] Kovács, S.J., Spectral sequences associated to morphisms of locally free sheaves, in preparation. Zbl1216.14014
  24. [24] Luo T., Zhang Q., Holomorphic forms on threefolds, math.AG/0304022. Zbl1216.14013MR2182772
  25. [25] Mori S., Classification of higher-dimensional varieties, in: Algebraic Geometry, Bowdoin, 1985, Brunswick, Maine, 1985, Proc. Sympos. Pure Math., vol. 46, American Mathematical Society, Providence, RI, 1987, pp. 269-331, MR927961 (89a:14040). Zbl0656.14022MR927961
  26. [26] Reid M., Minimal models of canonical 3-folds, in: Algebraic Varieties and Analytic Varieties, Tokyo, 1981, Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 131-180, MR715649 (86a:14010). Zbl0558.14028MR715649
  27. [27] Ueno K., Classification Theory of Algebraic Varieties and Compact Complex Spaces, Lecture Notes in Mathematics, vol. 439, Springer, Berlin, 1975, Notes written in collaboration with P. Cherenack, MR0506253 (58 #22062). Zbl0299.14007MR506253
  28. [28] Viehweg E., Zuo K., On the isotriviality of families of projective manifolds over curves, J. Algebraic Geom.10 (4) (2001) 781-799, MR1838979 (2002g:14012). Zbl1079.14503MR1838979
  29. [29] Zhang Q., Global holomorphic one-forms on projective manifolds with ample canonical bundles, J. Algebraic Geom.6 (4) (1997) 777-787, MR1487236 (99k:14071). Zbl0922.14008MR1487236

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.