Strong resonant tunneling, level repulsion and spectral type for one-dimensional adiabatic quasi-periodic Schrödinger operators

Alexander Fedotov; Frédéric Klopp

Annales scientifiques de l'École Normale Supérieure (2005)

  • Volume: 38, Issue: 6, page 889-950
  • ISSN: 0012-9593

How to cite

top

Fedotov, Alexander, and Klopp, Frédéric. "Strong resonant tunneling, level repulsion and spectral type for one-dimensional adiabatic quasi-periodic Schrödinger operators." Annales scientifiques de l'École Normale Supérieure 38.6 (2005): 889-950. <http://eudml.org/doc/82678>.

@article{Fedotov2005,
author = {Fedotov, Alexander, Klopp, Frédéric},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {quasi-periodic Schrödinger operator; singular spectrum; spectral gap; resonant tunneling},
language = {eng},
number = {6},
pages = {889-950},
publisher = {Elsevier},
title = {Strong resonant tunneling, level repulsion and spectral type for one-dimensional adiabatic quasi-periodic Schrödinger operators},
url = {http://eudml.org/doc/82678},
volume = {38},
year = {2005},
}

TY - JOUR
AU - Fedotov, Alexander
AU - Klopp, Frédéric
TI - Strong resonant tunneling, level repulsion and spectral type for one-dimensional adiabatic quasi-periodic Schrödinger operators
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 6
SP - 889
EP - 950
LA - eng
KW - quasi-periodic Schrödinger operator; singular spectrum; spectral gap; resonant tunneling
UR - http://eudml.org/doc/82678
ER -

References

top
  1. [1] Avron J., Simon B., Almost periodic Schrödinger operators, II. The integrated density of states, Duke Math. J.50 (1983) 369-391. Zbl0544.35030MR700145
  2. [2] Bellissard J., Lima R., Testard D., Metal-insulator transition for the Almost Mathieu model, Comm. Math. Phys.88 (1983) 207-234. Zbl0542.35059MR696805
  3. [3] Buslaev V., Fedotov A., On the difference equations with periodic coefficients, Adv. Theor. Math. Phys.5 (6) (2001) 1105-1168. Zbl1012.39008MR1926666
  4. [4] Buslaev V.S., Fedotov A.A., Bloch solutions for difference equations, Algebra Anal.7 (4) (1995) 74-122. Zbl0847.39002MR1356532
  5. [5] Dinaburg E.I., Sinaĭ J.G., The one-dimensional Schrödinger equation with quasiperiodic potential, Funkcional. Anal. Priložen.9 (4) (1975) 8-21. Zbl0333.34014MR470318
  6. [6] Eastham M., The Spectral Theory of Periodic Differential Operators, Scottish Academic Press, Edinburgh, 1973. Zbl0287.34016
  7. [7] Fedotov A., Klopp F., On the absolutely continuous spectrum of one-dimensional quasi-periodic Schrödinger operators in the adiabatic limit, Trans. Amer. Math. Soc.357 (2005) 4481-4516. Zbl1101.34069MR2156718
  8. [8] Fedotov A., Klopp F., Geometric tools of the adiabatic complex WKB method, Asymptot. Anal.39 (3–4) (2004) 309-357. Zbl1070.34124MR2097997
  9. [9] Fedotov A., Klopp F., On the singular spectrum of one-dimensional quasi-periodic Schrödinger operators in the adiabatic limit, Ann. H. Poincaré5 (2004) 929-978. Zbl1059.81057MR2091984
  10. [10] Fedotov A., Klopp F., A complex WKB method for adiabatic problems, Asymptot. Anal.27 (3–4) (2001) 219-264. Zbl1001.34082MR1858917
  11. [11] Fedotov A., Klopp F., Anderson transitions for a family of almost periodic Schrödinger equations in the adiabatic case, Comm. Math. Phys.227 (1) (2002) 1-92. Zbl1004.81008MR1903839
  12. [12] Fedotov A., Klopp F., Weakly resonant tunneling interactions for adiabatic quasi-periodic Schrödinger operators, Mémoires SMF, in press. Zbl1129.34001
  13. [13] Firsova N.E., On the global quasimomentum in solid state physics, in: Mathematical Methods in Physics, Londrina, 1999, World Scientific, River Edge, NJ, 2000, pp. 98-141. Zbl0996.81124MR1775625
  14. [14] Gilbert D., Pearson D., On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators, J. Math. Anal. Appl.128 (1987) 30-56. Zbl0666.34023MR915965
  15. [15] Harrell E.M., Double wells, Comm. Math. Phys.75 (3) (1980) 239-261. Zbl0445.35036MR581948
  16. [16] Helffer B., Sjöstrand J., Multiple wells in the semi-classical limit I, Comm. Partial Differential Equations9 (1984) 337-408. Zbl0546.35053MR740094
  17. [17] Herman M., Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnol'd et de Moser sur le tore de dimension 2, Comment. Math. Helv.58 (3) (1983) 453-502. Zbl0554.58034MR727713
  18. [18] Its A.R., Matveev V.B., Hill operators with a finite number of lacunae, Funkcional. Anal. Priložen.9 (1) (1975) 69-70. Zbl0318.34038MR390355
  19. [19] Last Y., Simon B., Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators, Invent. Math.135 (2) (1999) 329-367. Zbl0931.34066MR1666767
  20. [20] Marchenko V., Ostrovskii I., A characterization of the spectrum of Hill's equation, Math. USSR Sb.26 (1975) 493-554. Zbl0343.34016
  21. [21] McKean H., van Moerbeke P., The spectrum of Hill's equation, Invent. Math.30 (1975) 217-274. Zbl0319.34024MR397076
  22. [22] McKean H.P., Trubowitz E., Hill's surfaces and their theta functions, Bull. Amer. Math. Soc.84 (6) (1978) 1042-1085. Zbl0428.34026MR508448
  23. [23] Novikov S., Manakov S.V., Pitaevskiĭ L.P., Zakharov V.E., Theory of Solitons, Contemporary Soviet Mathematics, Consultants Bureau (Plenum), New York, 1984, The inverse scattering method. Translated from the Russian. Zbl0598.35002MR779467
  24. [24] Pastur L., Figotin A., Spectra of Random and Almost-Periodic Operators, Grundlehren der Mathematischen Wissenschaften, vol. 297, Springer, Berlin, 1992. Zbl0752.47002MR1223779
  25. [25] Shabat B.V., Vvedenie v kompleksnyi analiz. Chast I, Nauka, Moscow, 1985, Funktsii odnogo peremennogo (Functions of a single variable). MR819482
  26. [26] Simon B., Instantons, double wells and large deviations, Bull. Amer. Math. Soc. (N.S.)8 (2) (1983) 323-326. Zbl0529.35059MR684899
  27. [27] Sorets E., Spencer T., Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials, Comm. Math. Phys.142 (3) (1991) 543-566. Zbl0745.34046MR1138050
  28. [28] Titschmarch E.C., Eigenfunction Expansions Associated with Second-Order Differential Equations. Part II, Clarendon Press, Oxford, 1958. Zbl0097.27601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.