Quasi-morphismes et invariant de Calabi
Annales scientifiques de l'École Normale Supérieure (2006)
- Volume: 39, Issue: 1, page 177-195
- ISSN: 0012-9593
Access Full Article
topHow to cite
topPy, Pierre. "Quasi-morphismes et invariant de Calabi." Annales scientifiques de l'École Normale Supérieure 39.1 (2006): 177-195. <http://eudml.org/doc/82681>.
@article{Py2006,
author = {Py, Pierre},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {symplectic manifolds; Calabi invariant; Hamiltonian isotopy; quasimorphisms},
language = {fre},
number = {1},
pages = {177-195},
publisher = {Elsevier},
title = {Quasi-morphismes et invariant de Calabi},
url = {http://eudml.org/doc/82681},
volume = {39},
year = {2006},
}
TY - JOUR
AU - Py, Pierre
TI - Quasi-morphismes et invariant de Calabi
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 1
SP - 177
EP - 195
LA - fre
KW - symplectic manifolds; Calabi invariant; Hamiltonian isotopy; quasimorphisms
UR - http://eudml.org/doc/82681
ER -
References
top- [1] Arnold V.I., On a characteristic class entering into conditions of quantization, Funct. Anal. Appl.1 (1967) 1-14. Zbl0175.20303MR211415
- [2] Arnold V.I., The asymptotic Hopf invariant and its applications, Sel. Math. Sov.5 (1986) 327-345. Zbl0623.57016MR891881
- [3] Banyaga A., The group of diffeomorphisms preserving a regular contact form, in: Topology and algebra, Proc. Colloq., Eidgenoss. Tech. Hochsch., Zurich, 1977, Monograph. Enseign. Math., vol. 26, Univ. Genève, 1978, pp. 47-53. Zbl0392.53022MR511781
- [4] Banyaga A., Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv.53 (2) (1978) 174-227. Zbl0393.58007MR490874
- [5] Barge J., Ghys É., Cocycles d'Euler et de Maslov, Math. Ann.294 (2) (1992) 235-265. Zbl0894.55006MR1183404
- [6] Bavard C., Longueur stable des commutateurs, Enseign. Math. (2)37 (1991) 109-150. Zbl0810.20026MR1115747
- [7] Biran P., Entov M., Polterovich L., Calabi quasimorphisms for the symplectic ball, Commun. Contemp. Math.6 (2004) 793-802. Zbl1076.53110MR2100764
- [8] Brooks R., Some remarks on bounded cohomology, in: Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference, State Univ. New York, Stony Brook, NY, 1978, Ann. of Math. Stud., Princeton University Press, Princeton, NJ, 1981, pp. 53-63. Zbl0457.55002MR624804
- [9] Calabi E., On the group of automorphisms of a symplectic manifold, in: Problems in Analysis, Symposium in honour of S. Bochner, Princeton University Press, Princeton, NJ, 1970, pp. 1-26. Zbl0209.25801MR350776
- [10] Dupont J., Bounds for the characteristic numbers of flat bundles, in: Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 109-119. Zbl0511.57018MR561216
- [11] Earle C.J., Eells J., A fibre bundle description of Teichmüller theory, J. Differential Geom.3 (1969) 19-43. Zbl0185.32901MR276999
- [12] Entov M., Commutator length of symplectomorphisms, Comment. Math. Helv.79 (2004) 58-104. Zbl1048.53056MR2031300
- [13] Entov M., Polterovich L., Calabi quasimorphism and quantum homology, Int. Math. Res. Not.30 (2003) 1635-1676. Zbl1047.53055MR1979584
- [14] Gambaudo J.-M., Ghys É, Commutators and diffeomorphisms of surfaces, Ergodic Theory Dynamical Systems24 (5) (2004) 1591-1671. Zbl1088.37018MR2104597
- [15] Ghys É, Groups acting on the circle, Enseign. Math. (2)47 (2001) 329-407. Zbl1044.37033MR1876932
- [16] Gromov M., Pseudo-holomorphic curves in symplectic manifolds, Invent. Math.82 (1985) 307-347. Zbl0592.53025MR1554036
- [17] Guichardet A., Wigner D., Sur la cohomologie réelle des groupes de Lie simples réels, Ann. Sci. École Norm. Sup.11 (1978) 277-292. Zbl0398.22015MR510552
- [18] Kingman J.F.C., Subadditive Processes, Lecture Notes in Math., vol. 539, Springer, Berlin, 1976. Zbl0367.60030MR438477
- [19] McDuff D., Salamon D., Introduction to Symplectic Topology, Oxford Mathematical Monographs, Clarendon Press/Oxford University Press, New York, 1998. Zbl0844.58029MR1702941
- [20] Oseledec V.I., A multiplicative ergodic theorem, Ljapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc.19 (1968) 197-231. Zbl0236.93034MR240280
- [21] Py P., Quasi-morphisme de Calabi sur les surfaces de genre supérieur, C. R. Math. Acad. Sci. Paris341 (1) (2005) 29-34. Zbl1127.53046MR2153388
- [22] Reeb G., Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique, C. R. Math. Acad. Sci. Paris222 (1946) 847-849. Zbl0063.06453MR15613
- [23] Ruelle D., Rotation numbers for diffeomorphisms and flows, Ann. Inst. H. Poincaré Phys. Théor.42 (1) (1985) 109-115. Zbl0556.58026MR794367
- [24] Schwartzman S., Asymptotic cycles, Ann. of Math. (2)66 (1957) 270-284. Zbl0207.22603MR88720
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.