Quasi-morphismes et invariant de Calabi

Pierre Py

Annales scientifiques de l'École Normale Supérieure (2006)

  • Volume: 39, Issue: 1, page 177-195
  • ISSN: 0012-9593

How to cite

top

Py, Pierre. "Quasi-morphismes et invariant de Calabi." Annales scientifiques de l'École Normale Supérieure 39.1 (2006): 177-195. <http://eudml.org/doc/82681>.

@article{Py2006,
author = {Py, Pierre},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {symplectic manifolds; Calabi invariant; Hamiltonian isotopy; quasimorphisms},
language = {fre},
number = {1},
pages = {177-195},
publisher = {Elsevier},
title = {Quasi-morphismes et invariant de Calabi},
url = {http://eudml.org/doc/82681},
volume = {39},
year = {2006},
}

TY - JOUR
AU - Py, Pierre
TI - Quasi-morphismes et invariant de Calabi
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 1
SP - 177
EP - 195
LA - fre
KW - symplectic manifolds; Calabi invariant; Hamiltonian isotopy; quasimorphisms
UR - http://eudml.org/doc/82681
ER -

References

top
  1. [1] Arnold V.I., On a characteristic class entering into conditions of quantization, Funct. Anal. Appl.1 (1967) 1-14. Zbl0175.20303MR211415
  2. [2] Arnold V.I., The asymptotic Hopf invariant and its applications, Sel. Math. Sov.5 (1986) 327-345. Zbl0623.57016MR891881
  3. [3] Banyaga A., The group of diffeomorphisms preserving a regular contact form, in: Topology and algebra, Proc. Colloq., Eidgenoss. Tech. Hochsch., Zurich, 1977, Monograph. Enseign. Math., vol. 26, Univ. Genève, 1978, pp. 47-53. Zbl0392.53022MR511781
  4. [4] Banyaga A., Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv.53 (2) (1978) 174-227. Zbl0393.58007MR490874
  5. [5] Barge J., Ghys É., Cocycles d'Euler et de Maslov, Math. Ann.294 (2) (1992) 235-265. Zbl0894.55006MR1183404
  6. [6] Bavard C., Longueur stable des commutateurs, Enseign. Math. (2)37 (1991) 109-150. Zbl0810.20026MR1115747
  7. [7] Biran P., Entov M., Polterovich L., Calabi quasimorphisms for the symplectic ball, Commun. Contemp. Math.6 (2004) 793-802. Zbl1076.53110MR2100764
  8. [8] Brooks R., Some remarks on bounded cohomology, in: Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference, State Univ. New York, Stony Brook, NY, 1978, Ann. of Math. Stud., Princeton University Press, Princeton, NJ, 1981, pp. 53-63. Zbl0457.55002MR624804
  9. [9] Calabi E., On the group of automorphisms of a symplectic manifold, in: Problems in Analysis, Symposium in honour of S. Bochner, Princeton University Press, Princeton, NJ, 1970, pp. 1-26. Zbl0209.25801MR350776
  10. [10] Dupont J., Bounds for the characteristic numbers of flat bundles, in: Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 109-119. Zbl0511.57018MR561216
  11. [11] Earle C.J., Eells J., A fibre bundle description of Teichmüller theory, J. Differential Geom.3 (1969) 19-43. Zbl0185.32901MR276999
  12. [12] Entov M., Commutator length of symplectomorphisms, Comment. Math. Helv.79 (2004) 58-104. Zbl1048.53056MR2031300
  13. [13] Entov M., Polterovich L., Calabi quasimorphism and quantum homology, Int. Math. Res. Not.30 (2003) 1635-1676. Zbl1047.53055MR1979584
  14. [14] Gambaudo J.-M., Ghys É, Commutators and diffeomorphisms of surfaces, Ergodic Theory Dynamical Systems24 (5) (2004) 1591-1671. Zbl1088.37018MR2104597
  15. [15] Ghys É, Groups acting on the circle, Enseign. Math. (2)47 (2001) 329-407. Zbl1044.37033MR1876932
  16. [16] Gromov M., Pseudo-holomorphic curves in symplectic manifolds, Invent. Math.82 (1985) 307-347. Zbl0592.53025MR1554036
  17. [17] Guichardet A., Wigner D., Sur la cohomologie réelle des groupes de Lie simples réels, Ann. Sci. École Norm. Sup.11 (1978) 277-292. Zbl0398.22015MR510552
  18. [18] Kingman J.F.C., Subadditive Processes, Lecture Notes in Math., vol. 539, Springer, Berlin, 1976. Zbl0367.60030MR438477
  19. [19] McDuff D., Salamon D., Introduction to Symplectic Topology, Oxford Mathematical Monographs, Clarendon Press/Oxford University Press, New York, 1998. Zbl0844.58029MR1702941
  20. [20] Oseledec V.I., A multiplicative ergodic theorem, Ljapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc.19 (1968) 197-231. Zbl0236.93034MR240280
  21. [21] Py P., Quasi-morphisme de Calabi sur les surfaces de genre supérieur, C. R. Math. Acad. Sci. Paris341 (1) (2005) 29-34. Zbl1127.53046MR2153388
  22. [22] Reeb G., Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique, C. R. Math. Acad. Sci. Paris222 (1946) 847-849. Zbl0063.06453MR15613
  23. [23] Ruelle D., Rotation numbers for diffeomorphisms and flows, Ann. Inst. H. Poincaré Phys. Théor.42 (1) (1985) 109-115. Zbl0556.58026MR794367
  24. [24] Schwartzman S., Asymptotic cycles, Ann. of Math. (2)66 (1957) 270-284. Zbl0207.22603MR88720

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.