Homology stability for orthogonal groups over algebraically closed fields
Annales scientifiques de l'École Normale Supérieure (2007)
- Volume: 40, Issue: 3, page 487-517
- ISSN: 0012-9593
Access Full Article
topHow to cite
topCathelineau, Jean-Louis. "Homology stability for orthogonal groups over algebraically closed fields." Annales scientifiques de l'École Normale Supérieure 40.3 (2007): 487-517. <http://eudml.org/doc/82719>.
@article{Cathelineau2007,
author = {Cathelineau, Jean-Louis},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Pythagorean fields; homology stability; Milnor K-groups; orthogonal groups},
language = {eng},
number = {3},
pages = {487-517},
publisher = {Elsevier},
title = {Homology stability for orthogonal groups over algebraically closed fields},
url = {http://eudml.org/doc/82719},
volume = {40},
year = {2007},
}
TY - JOUR
AU - Cathelineau, Jean-Louis
TI - Homology stability for orthogonal groups over algebraically closed fields
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 3
SP - 487
EP - 517
LA - eng
KW - Pythagorean fields; homology stability; Milnor K-groups; orthogonal groups
UR - http://eudml.org/doc/82719
ER -
References
top- [1] Betley S., Homology stability for over a local ring, Trans. Amer. Math. Soc.303 (1987) 413-429. Zbl0632.20026MR896030
- [2] Betley S., Homology stability for over a semi-local ring, Glasgow Math. J.32 (1990) 255-259. Zbl0722.20031MR1058540
- [3] Bökstedt M., Brun M., Dupont J., Homology of and made discrete: an application of edgewise subdivision, J. Pure Appl. Algebra123 (1998) 131-152. Zbl0910.20026MR1492898
- [4] Borel A., Linear Algebraic Groups, Grad. Texts in Math., vol. 126, second revised ed., Springer-Verlag, 1991. Zbl0726.20030MR1102012
- [5] Brown K.S., Cohomology of Groups, Grad. Texts in Math., vol. 87, Springer-Verlag, 1982. Zbl0584.20036MR672956
- [6] Cathelineau J.-L., Homology of tangent groups considered as discrete groups and scissors congruences, J. Pure Appl. Algebra132 (1998) 9-25. Zbl0928.18006MR1634379
- [7] Cathelineau J.-L., Scissors congruences and the bar and cobar constructions, J. Pure Appl. Algebra181 (2003) 141-179. Zbl1037.52012MR1975297
- [8] Cathelineau J.-L., Projective configurations, homology of orthogonal groups and Milnor K-theory, Duke Math. J.121 (2004) 343-387. Zbl1057.19002MR2034645
- [9] Cathelineau J.-L., Homology of orthogonal groups: a quadratic algebra, 30 (2003) 13-35. Zbl1047.18013MR2061846
- [10] Cathelineau J.-L., The Pfaffian and the Lie algebra homology of skew-symmetric matrices, Math. Res. Let.11 (2004) 315-326. Zbl1060.17011MR2067476
- [11] Charney R.M., A generalization of a theorem of Vogtmann, J. Pure Appl. Algebra44 (1987) 107-125. Zbl0615.20024MR885099
- [12] Collinet G., Quelques propriétés homologiques du groupe , Thèse, Paris, 2002.
- [13] Dieudonné J., Sur les groupes classiques, Hermann, Paris, 1958. Zbl0926.20030MR344355
- [14] Dupont J.L., Algebras of polytopes and homology of flag complexes, Osaka J. Math.19 (1982) 599-641. Zbl0499.51014MR676240
- [15] Dupont J.L., Scissors Congruences, Group Homology and Characteristic Classes, Nankai Tracts in Mathematics, vol. 1, World Scientific, 2001. Zbl0977.52020MR1832859
- [16] Dupont J.L., Sah C.H., Scissors congruences II, J. Pure Appl. Algebra25 (1982) 159-195. Zbl0496.52004MR662760
- [17] Dupont J.L., Parry W., Sah C.H., Homology of classical Lie groups made discrete II, J. Algebra113 (1988) 215-260. Zbl0657.55022MR928063
- [18] Friedlander E.M., Homology stability for classical groups over finite fields, in: Lecture Notes in Math., vol. 551, Springer-Verlag, 1976, pp. 290-302. Zbl0358.18013MR482741
- [19] Guin D., Homologie du groupe linéaire et K-théorie de Milnor des anneaux, J. Algebra123 (1989) 27-59. Zbl0669.20037MR1000474
- [20] Goncharov A., Volumes of hyperbolic manifolds and mixed Tate motives, J. Amer Math. Soc.12 (1999) 569-618. Zbl0919.11080MR1649192
- [21] Hutchinson K., A new approach to Matsumoto's theorem, K-Theory4 (1990) 181-200. Zbl0725.19001MR1081659
- [22] Van der Kallen W., Homology stability for linear groups, Invent. Math.60 (1980) 269-295. Zbl0415.18012MR586429
- [23] Karoubi M., Théorie de Quillen et homologie du groupe orthogonal, Ann. of Math.112 (1980) 207-257. Zbl0478.18008MR592291
- [24] Karoubi M., Le théorème fondamental de la K-théorie hermitienne, Ann. of Math.112 (1980) 259-282. Zbl0483.18008MR592292
- [25] Lam T.Y., The Algebraic Theory of Quadratic Forms, Benjamin, 1973. Zbl0259.10019MR396410
- [26] Loday J.L., Procesi C., Homology of symplectic and orthogonal algebras, Adv. in Math.69 (1988) 93-108. Zbl0716.17019MR937318
- [27] Milnor J., Algebraic K-theory of quadratic forms, Invent. Math.9 (1970) 318-344. Zbl0199.55501MR260844
- [28] Mirzaii B., Van der Kallen W., Homology stability for unitary groups, Doc. Math.7 (2002) 143-166. Zbl0999.19005MR1911214
- [29] Nesterenko T.Y., Suslin A.A., Homology of the full linear group over a local ring and Milnor's K-theory, Math. SSSR Izvestija34 (1990) 121-145. Zbl0684.18001MR992981
- [30] Panin I., Homological stabilization for the orthogonal and symplectic groups, J. Soviet Math.52 (1990) 3165-3170. Zbl0900.20077MR906859
- [31] Panin I., On stabilization for orthogonal and symplectic algebraic K-theory, Leningrad Math. J.1 (1990) 741-764. Zbl0731.19003MR1015131
- [32] Rosenberg J., Algebraic K-Theory and Its Applications, Grad. Text Math., vol. 147, Springer-Verlag, 1994. Zbl0801.19001MR1282290
- [33] Sah C.H., Homology of classical Lie groups made discrete, I. Stability theorems and Schur multipliers, Comment. Math. Helv.61 (1986) 308-347. Zbl0607.57025MR856093
- [34] Sah C.H., Hilbert's Third Problem: Scissors Congruence, Research Notes in Math., vol. 33, Pitman, 1979. Zbl0406.52004
- [35] Sah C.H., Wagoner J.B., Second homology of Lie groups made discrete, Comm. Algebra5 (1977) 611-642. Zbl0375.18006MR646087
- [36] Suslin A.A., Homology of , characteristic classes and MilnorK-theory, in: Lecture Notes in Math., vol. 1046, Springer-Verlag, 1984, pp. 357-375. Zbl0528.18007MR750690
- [37] Suslin A.A., Stability in algebraic K-theory, in: Oberwolfach, 1980, Lecture Notes in Math., vol. 966, Springer-Verlag, 1982, pp. 303-333. Zbl0498.18008MR689381
- [38] Vogtman K., Homology stability for , Comm. Algebra7 (1979) 9-38. Zbl0417.20040MR514863
- [39] Vogtman K., Spherical posets and homology stability for , Topology20 (1981) 119-132. Zbl0455.20031MR605652
- [40] Vogtman K., A Stiefel complex for the orthogonal group of a field, Comment. Math. Helv.57 (1982) 11-21. Zbl0506.20018MR672842
- [41] Weibel C., An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge Univ. Press, 1994. Zbl0834.18001MR1269324
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.