Homology stability for orthogonal groups over algebraically closed fields

Jean-Louis Cathelineau

Annales scientifiques de l'École Normale Supérieure (2007)

  • Volume: 40, Issue: 3, page 487-517
  • ISSN: 0012-9593

How to cite

top

Cathelineau, Jean-Louis. "Homology stability for orthogonal groups over algebraically closed fields." Annales scientifiques de l'École Normale Supérieure 40.3 (2007): 487-517. <http://eudml.org/doc/82719>.

@article{Cathelineau2007,
author = {Cathelineau, Jean-Louis},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Pythagorean fields; homology stability; Milnor K-groups; orthogonal groups},
language = {eng},
number = {3},
pages = {487-517},
publisher = {Elsevier},
title = {Homology stability for orthogonal groups over algebraically closed fields},
url = {http://eudml.org/doc/82719},
volume = {40},
year = {2007},
}

TY - JOUR
AU - Cathelineau, Jean-Louis
TI - Homology stability for orthogonal groups over algebraically closed fields
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 3
SP - 487
EP - 517
LA - eng
KW - Pythagorean fields; homology stability; Milnor K-groups; orthogonal groups
UR - http://eudml.org/doc/82719
ER -

References

top
  1. [1] Betley S., Homology stability for O ( n , n ) over a local ring, Trans. Amer. Math. Soc.303 (1987) 413-429. Zbl0632.20026MR896030
  2. [2] Betley S., Homology stability for O ( n , n ) over a semi-local ring, Glasgow Math. J.32 (1990) 255-259. Zbl0722.20031MR1058540
  3. [3] Bökstedt M., Brun M., Dupont J., Homology of O n and O 1 ( 1 , n ) made discrete: an application of edgewise subdivision, J. Pure Appl. Algebra123 (1998) 131-152. Zbl0910.20026MR1492898
  4. [4] Borel A., Linear Algebraic Groups, Grad. Texts in Math., vol. 126, second revised ed., Springer-Verlag, 1991. Zbl0726.20030MR1102012
  5. [5] Brown K.S., Cohomology of Groups, Grad. Texts in Math., vol. 87, Springer-Verlag, 1982. Zbl0584.20036MR672956
  6. [6] Cathelineau J.-L., Homology of tangent groups considered as discrete groups and scissors congruences, J. Pure Appl. Algebra132 (1998) 9-25. Zbl0928.18006MR1634379
  7. [7] Cathelineau J.-L., Scissors congruences and the bar and cobar constructions, J. Pure Appl. Algebra181 (2003) 141-179. Zbl1037.52012MR1975297
  8. [8] Cathelineau J.-L., Projective configurations, homology of orthogonal groups and Milnor K-theory, Duke Math. J.121 (2004) 343-387. Zbl1057.19002MR2034645
  9. [9] Cathelineau J.-L., Homology of orthogonal groups: a quadratic algebra, 30 (2003) 13-35. Zbl1047.18013MR2061846
  10. [10] Cathelineau J.-L., The Pfaffian and the Lie algebra homology of skew-symmetric matrices, Math. Res. Let.11 (2004) 315-326. Zbl1060.17011MR2067476
  11. [11] Charney R.M., A generalization of a theorem of Vogtmann, J. Pure Appl. Algebra44 (1987) 107-125. Zbl0615.20024MR885099
  12. [12] Collinet G., Quelques propriétés homologiques du groupe O n Z 1 / 2 , Thèse, Paris, 2002. 
  13. [13] Dieudonné J., Sur les groupes classiques, Hermann, Paris, 1958. Zbl0926.20030MR344355
  14. [14] Dupont J.L., Algebras of polytopes and homology of flag complexes, Osaka J. Math.19 (1982) 599-641. Zbl0499.51014MR676240
  15. [15] Dupont J.L., Scissors Congruences, Group Homology and Characteristic Classes, Nankai Tracts in Mathematics, vol. 1, World Scientific, 2001. Zbl0977.52020MR1832859
  16. [16] Dupont J.L., Sah C.H., Scissors congruences II, J. Pure Appl. Algebra25 (1982) 159-195. Zbl0496.52004MR662760
  17. [17] Dupont J.L., Parry W., Sah C.H., Homology of classical Lie groups made discrete II, J. Algebra113 (1988) 215-260. Zbl0657.55022MR928063
  18. [18] Friedlander E.M., Homology stability for classical groups over finite fields, in: Lecture Notes in Math., vol. 551, Springer-Verlag, 1976, pp. 290-302. Zbl0358.18013MR482741
  19. [19] Guin D., Homologie du groupe linéaire et K-théorie de Milnor des anneaux, J. Algebra123 (1989) 27-59. Zbl0669.20037MR1000474
  20. [20] Goncharov A., Volumes of hyperbolic manifolds and mixed Tate motives, J. Amer Math. Soc.12 (1999) 569-618. Zbl0919.11080MR1649192
  21. [21] Hutchinson K., A new approach to Matsumoto's theorem, K-Theory4 (1990) 181-200. Zbl0725.19001MR1081659
  22. [22] Van der Kallen W., Homology stability for linear groups, Invent. Math.60 (1980) 269-295. Zbl0415.18012MR586429
  23. [23] Karoubi M., Théorie de Quillen et homologie du groupe orthogonal, Ann. of Math.112 (1980) 207-257. Zbl0478.18008MR592291
  24. [24] Karoubi M., Le théorème fondamental de la K-théorie hermitienne, Ann. of Math.112 (1980) 259-282. Zbl0483.18008MR592292
  25. [25] Lam T.Y., The Algebraic Theory of Quadratic Forms, Benjamin, 1973. Zbl0259.10019MR396410
  26. [26] Loday J.L., Procesi C., Homology of symplectic and orthogonal algebras, Adv. in Math.69 (1988) 93-108. Zbl0716.17019MR937318
  27. [27] Milnor J., Algebraic K-theory of quadratic forms, Invent. Math.9 (1970) 318-344. Zbl0199.55501MR260844
  28. [28] Mirzaii B., Van der Kallen W., Homology stability for unitary groups, Doc. Math.7 (2002) 143-166. Zbl0999.19005MR1911214
  29. [29] Nesterenko T.Y., Suslin A.A., Homology of the full linear group over a local ring and Milnor's K-theory, Math. SSSR Izvestija34 (1990) 121-145. Zbl0684.18001MR992981
  30. [30] Panin I., Homological stabilization for the orthogonal and symplectic groups, J. Soviet Math.52 (1990) 3165-3170. Zbl0900.20077MR906859
  31. [31] Panin I., On stabilization for orthogonal and symplectic algebraic K-theory, Leningrad Math. J.1 (1990) 741-764. Zbl0731.19003MR1015131
  32. [32] Rosenberg J., Algebraic K-Theory and Its Applications, Grad. Text Math., vol. 147, Springer-Verlag, 1994. Zbl0801.19001MR1282290
  33. [33] Sah C.H., Homology of classical Lie groups made discrete, I. Stability theorems and Schur multipliers, Comment. Math. Helv.61 (1986) 308-347. Zbl0607.57025MR856093
  34. [34] Sah C.H., Hilbert's Third Problem: Scissors Congruence, Research Notes in Math., vol. 33, Pitman, 1979. Zbl0406.52004
  35. [35] Sah C.H., Wagoner J.B., Second homology of Lie groups made discrete, Comm. Algebra5 (1977) 611-642. Zbl0375.18006MR646087
  36. [36] Suslin A.A., Homology of GL n , characteristic classes and MilnorK-theory, in: Lecture Notes in Math., vol. 1046, Springer-Verlag, 1984, pp. 357-375. Zbl0528.18007MR750690
  37. [37] Suslin A.A., Stability in algebraic K-theory, in: Oberwolfach, 1980, Lecture Notes in Math., vol. 966, Springer-Verlag, 1982, pp. 303-333. Zbl0498.18008MR689381
  38. [38] Vogtman K., Homology stability for O n , n , Comm. Algebra7 (1979) 9-38. Zbl0417.20040MR514863
  39. [39] Vogtman K., Spherical posets and homology stability for O n , n , Topology20 (1981) 119-132. Zbl0455.20031MR605652
  40. [40] Vogtman K., A Stiefel complex for the orthogonal group of a field, Comment. Math. Helv.57 (1982) 11-21. Zbl0506.20018MR672842
  41. [41] Weibel C., An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge Univ. Press, 1994. Zbl0834.18001MR1269324

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.