p -rings and ring-logics

Alfred L. Foster

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1951)

  • Volume: 5, Issue: 3-4, page 279-300
  • ISSN: 0391-173X

How to cite

top

Foster, Alfred L.. "$p$-rings and ring-logics." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.3-4 (1951): 279-300. <http://eudml.org/doc/83115>.

@article{Foster1951,
author = {Foster, Alfred L.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {rings, modules, fields},
language = {eng},
number = {3-4},
pages = {279-300},
publisher = {Scuola normale superiore},
title = {$p$-rings and ring-logics},
url = {http://eudml.org/doc/83115},
volume = {5},
year = {1951},
}

TY - JOUR
AU - Foster, Alfred L.
TI - $p$-rings and ring-logics
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1951
PB - Scuola normale superiore
VL - 5
IS - 3-4
SP - 279
EP - 300
LA - eng
KW - rings, modules, fields
UR - http://eudml.org/doc/83115
ER -

References

top
  1. 1 A.L. Foster, « On n-ality theories in rings and their logical algebras, including tri-ality principle in three valued logics », Amer. Jour. of Math., V. LXXII, pp. 101-123. Zbl0037.01801MR33278
  2. 2 A.L. Foster, « p-Rings and their Boolean vector representation » Acta Mathematica, Vol. 84 (1950), pp. 231-261. Zbl0044.26202MR39705
  3. 3 A.L. Foster, « p Rings and ring-logics », University of Calif. publications in mathematics, Vol. 1: 10 (1951), pp. 385-396. Zbl0045.31902MR44503
  4. 4 A.L. Foster, « Boolean-extensions and sub-direct ring powers », In process of publication. 
  5. 5 N.H. M, « Subrings of direct sums », Amer. Jour. of Math., Vol. LX (1938), pp. 374-382. Zbl0018.34201JFM64.0076.02
  6. 6 N.H. M and Deane Montgomery, « A representation of generalized Boolean rings », Duke Math. Jour., Vol. 3, (1937) pp. 455-459. Zbl0017.24402MR1546001
  7. 7 M.H. Stone, « The theory of representations of Boolean algebra », Trans. of the Amer Math. Soc., V. 40 (1936), pp. 37-111. Zbl0014.34002MR1501865JFM62.0033.04
  8. 8 A.L. Foster, « The idempotent elements of a commutative ring form a Boolean algebra; ring duality and transformation theory », Duke Math. Jour., Vol. 12 (1945), pp. 143.152. Zbl0060.06603MR12264

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.