-rings and ring-logics
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1951)
- Volume: 5, Issue: 3-4, page 279-300
- ISSN: 0391-173X
Access Full Article
topHow to cite
topFoster, Alfred L.. "$p$-rings and ring-logics." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.3-4 (1951): 279-300. <http://eudml.org/doc/83115>.
@article{Foster1951,
author = {Foster, Alfred L.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {rings, modules, fields},
language = {eng},
number = {3-4},
pages = {279-300},
publisher = {Scuola normale superiore},
title = {$p$-rings and ring-logics},
url = {http://eudml.org/doc/83115},
volume = {5},
year = {1951},
}
TY - JOUR
AU - Foster, Alfred L.
TI - $p$-rings and ring-logics
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1951
PB - Scuola normale superiore
VL - 5
IS - 3-4
SP - 279
EP - 300
LA - eng
KW - rings, modules, fields
UR - http://eudml.org/doc/83115
ER -
References
top- 1 A.L. Foster, « On n-ality theories in rings and their logical algebras, including tri-ality principle in three valued logics », Amer. Jour. of Math., V. LXXII, pp. 101-123. Zbl0037.01801MR33278
- 2 A.L. Foster, « p-Rings and their Boolean vector representation » Acta Mathematica, Vol. 84 (1950), pp. 231-261. Zbl0044.26202MR39705
- 3 A.L. Foster, « p Rings and ring-logics », University of Calif. publications in mathematics, Vol. 1: 10 (1951), pp. 385-396. Zbl0045.31902MR44503
- 4 A.L. Foster, « Boolean-extensions and sub-direct ring powers », In process of publication.
- 5 N.H. M, « Subrings of direct sums », Amer. Jour. of Math., Vol. LX (1938), pp. 374-382. Zbl0018.34201JFM64.0076.02
- 6 N.H. M and Deane Montgomery, « A representation of generalized Boolean rings », Duke Math. Jour., Vol. 3, (1937) pp. 455-459. Zbl0017.24402MR1546001
- 7 M.H. Stone, « The theory of representations of Boolean algebra », Trans. of the Amer Math. Soc., V. 40 (1936), pp. 37-111. Zbl0014.34002MR1501865JFM62.0033.04
- 8 A.L. Foster, « The idempotent elements of a commutative ring form a Boolean algebra; ring duality and transformation theory », Duke Math. Jour., Vol. 12 (1945), pp. 143.152. Zbl0060.06603MR12264
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.