Multivalued functions in generalized axially symmetric potential theory

L. E. Payne

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1956)

  • Volume: 10, Issue: 3-4, page 135-145
  • ISSN: 0391-173X

How to cite

top

Payne, L. E.. "Multivalued functions in generalized axially symmetric potential theory." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 10.3-4 (1956): 135-145. <http://eudml.org/doc/83185>.

@article{Payne1956,
author = {Payne, L. E.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Partial Differential Equations; Potential Theory},
language = {eng},
number = {3-4},
pages = {135-145},
publisher = {Scuola normale superiore},
title = {Multivalued functions in generalized axially symmetric potential theory},
url = {http://eudml.org/doc/83185},
volume = {10},
year = {1956},
}

TY - JOUR
AU - Payne, L. E.
TI - Multivalued functions in generalized axially symmetric potential theory
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1956
PB - Scuola normale superiore
VL - 10
IS - 3-4
SP - 135
EP - 145
LA - eng
KW - Partial Differential Equations; Potential Theory
UR - http://eudml.org/doc/83185
ER -

References

top
  1. [1] Weinstein, A.Discontinuous integrals and generalized potential theory, Trans. Amer. Math. Soc., Vol. 63 (1948) pp. 342-354. Zbl0038.26204MR25023
  2. [2] Weinstein, A.Generalized axially symmetric potential theory, Bull. Amer. Math. Soc., Vol. 59 (1953) pp. 20-38. Zbl0053.25303MR53289
  3. [3] Van Tuyl, A.On the axially symmetric flow around a new family of halfbodies, Quart. Appl. Math., Vol. 7. (1950) pp. 399-409. Zbl0035.11902MR33682
  4. [4] Sadowsky, M.A. and Sternberg, E.Elliptic integral representation of axially symmetric flows, Quart. Appl. Math, Vol 8 (1950) pp. 113-126. Zbl0037.27507MR37425
  5. 5] Weinstein, A.The method of singularities in the physical and in the hodograph plane, Proc. Fourth Symp., Appl. Math. (1953) pp. 167-178. Zbl0053.14504MR56772
  6. [6] Hobson, E.Spherical and ellipsoidal harmonics, Cambridge Uuiv. Press (1931). Zbl0004.21001JFM57.0405.06
  7. [7] Churchill, R.V.Fourier series and boundary value problems, McGraw Hill (1941). Zbl0025.05403MR3251
  8. [8] Van Nostrand, R.G.The orthogonality of hyperboloid functions, J. Math. Phys., Vol. 33 (1954) pp. 276-282. Zbl0057.05305MR63489
  9. [9] Mehler, F.G.Über eine mit den Kugel - und Cylinder - functionen verwandte Function und ihre Anwendung in der Theorie der Elektricitätsvertheilung, Math. Ann. vol. 18 (1881) pp. 161-194. Zbl13.0779.02MR1510098JFM13.0779.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.