Mixed problems for higher order elliptic equations in two variables, I
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1961)
- Volume: 15, Issue: 4, page 337-353
- ISSN: 0391-173X
Access Full Article
topHow to cite
topPeetre, Jaak. "Mixed problems for higher order elliptic equations in two variables, I." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 15.4 (1961): 337-353. <http://eudml.org/doc/83271>.
@article{Peetre1961,
author = {Peetre, Jaak},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {partial differential equations},
language = {eng},
number = {4},
pages = {337-353},
publisher = {Scuola normale superiore},
title = {Mixed problems for higher order elliptic equations in two variables, I},
url = {http://eudml.org/doc/83271},
volume = {15},
year = {1961},
}
TY - JOUR
AU - Peetre, Jaak
TI - Mixed problems for higher order elliptic equations in two variables, I
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1961
PB - Scuola normale superiore
VL - 15
IS - 4
SP - 337
EP - 353
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/83271
ER -
References
top- [1] G. Fichera, Sul problema della derivata obliqua e sul problema misto per l'equazione di Laplace. Boll. Un. Mat. Ital.7 (1952), 367-377. Zbl0047.34303MR53291
- [2] G. Fichera, Condizioni perchè sia compatibile il problema principale della statica elastica. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Naz.14 (1953), 397-400. Zbl0052.20501MR57445
- [3] J.L. Lions, Espaces intermédiaires entre espaces hilbertiens et applications. Bull. Math. Soc. Sc. Math. Phys. R. P. Roumanie, 50 (1959), 419-432. Zbl0097.09501MR151829
- [4] C. Miranda, Su alcuni aspetti della teoria delle equazioni ellittiche. Bull. Soc. Math. France86 (1958), 331-354. Zbl0092.31303MR110876
- [5] J. Peetre, Théorémes de régularité pour quelques classes d'opérateurs différentiels. Thesis, Lund. 1959 (= Med. Lunds Univ. Mat. Sem.16 (1959), 1-122). Zbl0139.28402MR133593
- [6] J. Peetre, Another approach to elliptic boundary problems. To appear in Comm. Pure Appl. Math.14 (1961). Zbl0104.07303MR171069
- [7] J. Peetre, A proof of the hypoellipticity of formally hypoelliptic differential operators. To appear. in Comm. Pure Appl. Math.14 (1961). Zbl0104.07501MR144062
- [8] M. Schechter, Mixed boundary problems for general elliptic equations. Comm. Pure Appl. Math.13 (1960), 183-201. Zbl0095.08001MR125331
- [9] M. Schechter, A generalization of the problem of transmission. Ann. Scuola Norm. Sup. Pisa14 (1960), 207-236. Zbl0094.29603MR131063
- [10] M. Schechter, Various types of boundary conditions for elliptic equations. Comm. Pure Appl. Math.13 (1960), 407-425. Zbl0095.08002MR125332
- [11] J. Schwartz, Spectral resolution of singular integral operators. To appear.
- [12] N. Wiener. E. Hopf, Über eine Klasse singulärer Integralgleichungen. Sitz. Berlin. Akad. Wiss. (1931), 696-706. Zbl0003.30701JFM57.0463.01
- [13] A. Lienard, Problème plan de la derivée oblique dans la théorie du potentiel, Jour. Ecole Polit.5-7 (1938), 35-158 and 177-226. Zbl0019.26401JFM64.1163.03
- [14] E. Magenes and G. Stampacchia, I problemi al contorno per le equazioni differenziali di tipo ellittico. Ann. Sc. Normale Sup. Pisa7 (1958), 247-357. Zbl0082.09601MR123818
- [15] G. Stampacchia, Solutions continues de problèmes aux limites elliptiques à données discontinues. C. R. Acad. Sci. Paris250 (1960), 1426-1427. Zbl0092.10401MR126600
- [16] G. Stampacchia, Problemi al contorno ellittici, con dati discontinui, dotate de soluzioni hölderiane. Ann. Math. pure e appl.51 (1960), 1-38. Zbl0204.42001MR126601
- [17] W. Koppelman and J.V. Pincus, Spectral representations of finite Hilbert transformations. Math. Z71 (1459), 399-407. Zbl0085.31701MR107144
- [18] H. Widom, Singular integral equations in Lp. Trans. Amer-Math. Soc.97 (1960), 131-159. Zbl0109.33002MR119064
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.