On the pseudo-rigidity of Stein manifolds
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1962)
- Volume: 16, Issue: 3, page 213-223
- ISSN: 0391-173X
Access Full Article
topHow to cite
topAndreotti, A., and Vesentini, E.. "On the pseudo-rigidity of Stein manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 16.3 (1962): 213-223. <http://eudml.org/doc/83283>.
@article{Andreotti1962,
	author = {Andreotti, A., Vesentini, E.},
	journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
	keywords = {complex functions},
	language = {eng},
	number = {3},
	pages = {213-223},
	publisher = {Scuola normale superiore},
	title = {On the pseudo-rigidity of Stein manifolds},
	url = {http://eudml.org/doc/83283},
	volume = {16},
	year = {1962},
}
TY  - JOUR
AU  - Andreotti, A.
AU  - Vesentini, E.
TI  - On the pseudo-rigidity of Stein manifolds
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1962
PB  - Scuola normale superiore
VL  - 16
IS  - 3
SP  - 213
EP  - 223
LA  - eng
KW  - complex functions
UR  - http://eudml.org/doc/83283
ER  - 
References
top- 1 A. Andreotti et H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, vol. 90 (1962), pp. 193-259. Zbl0106.05501MR150342
- 2 K. Kodaira and D.C. Spencer, On deformations of complex analytic structures I-II, Annals of Math., vol. 67 (1958), p. 328-466. Zbl0128.16901MR112154
- 3 M.S. Narasimhan, Variations of complex structures on an open Riemann surface, Ann. Inst. Fourier Grenoble, Tome XI (1961), p. 493-514. Zbl0192.17901MR125960
- 4 R. Narasimhan, Imbedding of holomorphically complete complex spaces, Amer. J. of Math., vol. 82 (1960), p. 917-934. Zbl0104.05402MR148942
Citations in EuDML Documents
top- Francesco Gherardelli, Deformazioni rigide all'infinito di varietà di Stein
- A. Milani, C. Rea, Geometry and function algebra on pseudo-flat manifolds
- Claudio Rea, Un teorema di rigidità
- Henry B. Laufer, Versal deformations for two-dimensional pseudoconvex manifolds
- C. Bànicà, O. Stànàsilà, Some results on the extension of analytic entities defined out of a compact
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 