The Riemann-Roch theorem for algebraic curves

A. Mattuck; A. Mayer

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1963)

  • Volume: 17, Issue: 3, page 223-237
  • ISSN: 0391-173X

How to cite

top

Mattuck, A., and Mayer, A.. "The Riemann-Roch theorem for algebraic curves." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 17.3 (1963): 223-237. <http://eudml.org/doc/83304>.

@article{Mattuck1963,
author = {Mattuck, A., Mayer, A.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {algebraic geometry},
language = {eng},
number = {3},
pages = {223-237},
publisher = {Scuola normale superiore},
title = {The Riemann-Roch theorem for algebraic curves},
url = {http://eudml.org/doc/83304},
volume = {17},
year = {1963},
}

TY - JOUR
AU - Mattuck, A.
AU - Mayer, A.
TI - The Riemann-Roch theorem for algebraic curves
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1963
PB - Scuola normale superiore
VL - 17
IS - 3
SP - 223
EP - 237
LA - eng
KW - algebraic geometry
UR - http://eudml.org/doc/83304
ER -

References

top
  1. 1 Andreotti, A., « On a Theorem of Torelli ». American Journal of Mathematics, vol. 80 (1958), pp. 801-828. Zbl0084.17304MR102518
  2. 2 W.-L. Chow, « The Jacobian variety of an algebraic curve », American Journal of Mathematics. vol. 76 (1954), pp. 453-476. Zbl0056.14404MR61421
  3. 3 Lang. S., « Introduction to Algebraic Geometry », Interscience, N. Y. (1958). Zbl0095.15301MR100591
  4. 4 J.-P. Serre, « Groupes algebriques et corps de classes », Hermann, Paris (1958). Zbl0097.35604
  5. 5 O. Zariski and P. Samuel, «Commutative algebra », van Nostrand, N. Y., vol. 2, p. 230. Another proof of the Riemann-Roch theorem (characteristic zero) which uses the symmetric product is given in 
  6. 6 O. Zariski, « A topological proof of the Riemann-Roch theorem on an algebraic curve»American Journal of Mathematics, vol. 58 (1936), pp. 1-14. Zbl0013.07602MR1507131JFM62.0758.01

NotesEmbed ?

top

You must be logged in to post comments.