The Riemann-Roch theorem for algebraic curves
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1963)
- Volume: 17, Issue: 3, page 223-237
- ISSN: 0391-173X
Access Full Article
topHow to cite
topReferences
top- 1 Andreotti, A., « On a Theorem of Torelli ». American Journal of Mathematics, vol. 80 (1958), pp. 801-828. Zbl0084.17304MR102518
- 2 W.-L. Chow, « The Jacobian variety of an algebraic curve », American Journal of Mathematics. vol. 76 (1954), pp. 453-476. Zbl0056.14404MR61421
- 3 Lang. S., « Introduction to Algebraic Geometry », Interscience, N. Y. (1958). Zbl0095.15301MR100591
- 4 J.-P. Serre, « Groupes algebriques et corps de classes », Hermann, Paris (1958). Zbl0097.35604
- 5 O. Zariski and P. Samuel, «Commutative algebra », van Nostrand, N. Y., vol. 2, p. 230. Another proof of the Riemann-Roch theorem (characteristic zero) which uses the symmetric product is given in
- 6 O. Zariski, « A topological proof of the Riemann-Roch theorem on an algebraic curve»American Journal of Mathematics, vol. 58 (1936), pp. 1-14. Zbl0013.07602MR1507131JFM62.0758.01