Generating curves on abelian varieties and Riemann's theta-function

A. L. Mayer

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1965)

  • Volume: 19, Issue: 1, page 107-111
  • ISSN: 0391-173X

How to cite

top

Mayer, A. L.. "Generating curves on abelian varieties and Riemann's theta-function." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 19.1 (1965): 107-111. <http://eudml.org/doc/83338>.

@article{Mayer1965,
author = {Mayer, A. L.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {algebraic geometry},
language = {eng},
number = {1},
pages = {107-111},
publisher = {Scuola normale superiore},
title = {Generating curves on abelian varieties and Riemann's theta-function},
url = {http://eudml.org/doc/83338},
volume = {19},
year = {1965},
}

TY - JOUR
AU - Mayer, A. L.
TI - Generating curves on abelian varieties and Riemann's theta-function
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1965
PB - Scuola normale superiore
VL - 19
IS - 1
SP - 107
EP - 111
LA - eng
KW - algebraic geometry
UR - http://eudml.org/doc/83338
ER -

References

top
  1. [1] W.V.D. Hodge, Theory and Application of Harmonic Integrals, Cambrigde, 1959. 
  2. [2] W.L. Hoyt, On Products and algebraic families of jacobian varieties, Annals of Math, 77 (1963) 415-423. Zbl0154.20701MR150145
  3. [3] J. Lewittes, Riemann Surfaces and Theta-functions, to appear in Acta Math. Zbl0125.31803MR156964
  4. [4] A.L. Mayer, The cohomology ring of a compact Lie group with a bi-invariant metric, to appear in Proc. Amer. Math. Soc. Zbl0132.19503MR179293
  5. [5] T. Matsusaka, On a characterization of a Jacobian variety, Mem. Coll. Sci. Kyoto, ser. A. 39, No. 1, pp. 1-19. Zbl0094.34103MR108497
  6. [6] H. Poincare, Remarques divers sur les fonctions abeliennes, euvres, t. IV. JFM26.0510.01
  7. [7] B. Riemann, Theorie der Abelschen Funcktionen, Werke (Dover ed.) 88-142. 
  8. [8] A. Weil, Varietes abeliennes et courbes algebriques, Hermann1948. Zbl0037.16202MR29522
  9. [9] A. Weil, Varietes Kaehleriennes, Hermann1958. Zbl0137.41103MR111056
  10. [10] S. Lang, Abelian Varieties, Interscience, 1959. Zbl0098.13201MR106225
  11. [11] A. Weil, Zum Beweis des Torellischen Satzes, Nachr. Akad. Wins. Gött, Math. Phys. K1. (1957) No. 2. Zbl0079.37002MR89483

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.