Growth and decay properties of solutions of second order elliptic equations

Paul C. Fife

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1966)

  • Volume: 20, Issue: 4, page 675-701
  • ISSN: 0391-173X

How to cite

top

Fife, Paul C.. "Growth and decay properties of solutions of second order elliptic equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.4 (1966): 675-701. <http://eudml.org/doc/83401>.

@article{Fife1966,
author = {Fife, Paul C.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {partial differential equations},
language = {eng},
number = {4},
pages = {675-701},
publisher = {Scuola normale superiore},
title = {Growth and decay properties of solutions of second order elliptic equations},
url = {http://eudml.org/doc/83401},
volume = {20},
year = {1966},
}

TY - JOUR
AU - Fife, Paul C.
TI - Growth and decay properties of solutions of second order elliptic equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1966
PB - Scuola normale superiore
VL - 20
IS - 4
SP - 675
EP - 701
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/83401
ER -

References

top
  1. [1] Agmon, S., Forthcoming papers. See also his lecture notes at Université de Montreal, 1965. 
  2. [2] Agmon, S. and Nirenberg, L., Properties of ordinary differential equations in Banach space, Comm. Pure Appl. Math.16 (1963), 121-239. Zbl0117.10001MR155203
  3. [3] Agmon, S., and Nirenberg, L., Forthcoming paper. 
  4. [4] Antohin, Yu. T., On the Dirichlet problem for equations of second order of elliptic type in an unbounded domain, Trndy Mat. Inst. Steklov, 60 (1961), 22-41. MR177180
  5. [5] Blohina, G.N., Theorems of Phragmén-Lindelöf type for a linear second order elliptic equation, Dokl. Mat. Nauk S. S. S. R., 162 (1965), 727-730; Sov. Math.6 (1965), 720-723. Zbl0132.07403MR178229
  6. [6] Bouligand, G., Comptes Rend. Acad. Sci. Paris, 178 (1925), 55-57; 1054-1057. 
  7. [7] Carleman, T., Sur une inegalité différentielle dans la théorie des fonctions analytiques. Comptes Rend. Acad. Sci. Paris, 196 (1933). Zbl0006.31603JFM59.0327.02
  8. [8] Dinghas, A., Vorlesungen über Funktionentheorie — Springer, Berlin, (1961). Zbl0102.29301MR179329
  9. [9] Dinghas, A., Wachstumgprobleme harmonisoher und verwandter Funktionen in En, Ann. Acad. Scient. Fennicae A. I., 250/8 (1958). Zbl0080.30901MR96049
  10. [10] Dinghas, A., Über einige Konvexitätsfragen bei partiellen Differentialgleichungen vom Sturmschen Typus, Math. Ann. 155 (1964), 397-421. Zbl0161.31601MR174847
  11. [11] Gilbarg, D., The Phragmén-Lindelöf theorem for elliptic partial differential equations, J. Rat. Mech. Anal., 1 (1952), 411-417. Zbl0046.10403MR50122
  12. [12] Herzog, J.O., Phragmén-Lindelöf theorems for second order quasi-linear elliptic partial differential equations, Proc. Amer. Math. Soc., 15 (1964), 721-728. Zbl0168.36403MR168905
  13. [13] Hopf, E., Remarks on the preceding paper by D. Gilbarg, J. Rat. Mech. Anal. 1 (1952) 419-424. Zbl0046.10404MR50123
  14. [14] Huber, A., A theorem of Phragmen-Lindelöf type, Proc. Amer. Math. Soc., 4 (1953), 852-857. Zbl0053.39202MR61747
  15. [15] Kato, T., Growth properties of solutions of the reduced wave equation with variable coefficient, Comm. Pure Appl. Math.12 (1959), 403-425. Zbl0091.09502MR108633
  16. [16] Landis, E.M., Some questions in the qualitative theory of elliptic and parabolic equations. (a) Usp. Math. Nauk, 14 (1959), 21-85; Amer. Math. Soc. Transl. (2) 20 (1962), 173-238. Zbl0122.33701MR136855
  17. (b) Usp. Mat. Nauk, 18 (1963), 3-62. MR150437
  18. [17] Novrusov, A.A., Properties of sotutions of elliptic equations, Dokl. Akad. Nauk S.S.S.R., 139 (1961), 1304-1307; Sov. Math., 2 (1961), 1089-1092. Zbl0115.31204
  19. [18] Phragmén, E., and Lindelöf, E., Sur une extension d'un principe classique de l'analyze et sur quelque proprietis des fonctions monogènes dans le voisinage d'un point singulier, Acta Math.31 (1908). Zbl39.0465.01JFM39.0465.01
  20. [19] Serrin, J., Singularities of solutions of nonlinear equations. Proceedings of Symposia in Applied Mathematics, Vol. 17, Amer. Math. Soc., Providence, 1965, 68-88. Zbl0149.30701MR186903
  21. [20] Serrin, J., On the Phragmén-Lindelöf principle for elliptic differential equations, J. Rat. Mech. Anal., 8 (1954), 395-413. Zbl0055.32802MR62918

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.