Basic theory of Fredholm operators
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1967)
- Volume: 21, Issue: 2, page 261-280
- ISSN: 0391-173X
Access Full Article
topHow to cite
topSchechter, Martin. "Basic theory of Fredholm operators." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 21.2 (1967): 261-280. <http://eudml.org/doc/83422>.
@article{Schechter1967,
author = {Schechter, Martin},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {functional analysis},
language = {eng},
number = {2},
pages = {261-280},
publisher = {Scuola normale superiore},
title = {Basic theory of Fredholm operators},
url = {http://eudml.org/doc/83422},
volume = {21},
year = {1967},
}
TY - JOUR
AU - Schechter, Martin
TI - Basic theory of Fredholm operators
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1967
PB - Scuola normale superiore
VL - 21
IS - 2
SP - 261
EP - 280
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/83422
ER -
References
top- [1] F.V. Atkinson, The normal solubility of linear equations in normed spaces, Mat. Sb.(N. S.) 28 (70) (1951) 3-14. (Russian). Zbl0042.12001MR42059
- [2] I.C. Gohberg, On linear equations in Hilbert space, Dokl. Akad. Nauk SSSR(N.S.) 76 (1951) 9-12. (Russian). MR42057
- [3] I.C. Gohberg, On linear equations in normed spaces, ibid., 76 (1951) 477-480. (Russian). MR42058
- [4] I.C. Gohberg, On linear operators depending analytically on a parameter, ibid., 78 (1951) 629-632. (Russian). MR42060
- [5] Bertram Yood, Properties of linear transformations preserved under addition of a completely continuous transformation, Duke Math J.18 (1951) 599-612. Zbl0043.11901MR44020
- [6] M.G. Kreĭn and M.A. Krasnoselski, Stability of the index of an unbounded operator, Mat. Sb.(N. S.) 30 [72] (1952) 219-224 (Russian). MR47255
- [7] Bela Sz.-Nagy, On the Stability of the index of unbounded linear transformations, Acta. Math. Acad. Sic. Hungar.3 (1952) 49-52. Zbl0047.35901MR52038
- [8] I.C. Gohberg, On the index of an unbounded operator, Mat. Sb.(N. S.) 33 (75) (1953) 193-198. (Russian). Zbl0052.34603MR57461
- [9] I.C. Gohberg and M.G. Kreĭn, The basic propositions on defect numbers, root numbers and indices of linear operators, Uspeki Mat. Nauk.(N. S.) 12 (1957) 43-118. (Russian) Amer. Math. Soc. Transl., Series 2, 13 (1960) 185-264. Zbl0089.32201MR96978
- [10] Tosio Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. D'Analyse Math., 6 (1958) 261-322. Zbl0090.09003MR107819
- [11] A.E. Taylor, Introduction to functional analysis, J. Wiley & Sons, New York, 1958. Zbl0081.10202MR98966
- [12] Philip Hartman and Aurel Wintner, On the essential spectra of singular eigenvalue problems, Amer. J. Math.72 (1950) 545-552. Zbl0054.03902MR35903
- [13] Martin Schechter, On the essential spectrum of an arbitrary operator I, J. Math. Anal. Appl.13 (1966) 205-215. Zbl0147.12101MR188798
- [14] Frantisek Wolf, On the essential spectrum of partial differential boundary problems, Comm. Pure Appl. Math., 12 (1959) 211-228. Zbl0087.30501MR107750
- [15] F.E. Browder, On the spectral theory of elliptic differential operators I, Math. Ann.142 (1961) 22-130. Zbl0104.07502MR209909
- [16] M.S. Birman, On the spectrum of singular boundary problems, Math. Sb.55 (2) 97 (1961) 125-174. Zbl0104.32601MR142896
- [17] Frantisek Wolf, On the invariance of the essential spectrum under a change of boundary conditions of partial differential boundary operators, Indag. Math., 21 (1959) 142-315. Zbl0086.08203MR107751
- [18] P.A. Rejto, On the essential spectrum of the hydrogen energy operator, Pacific J. Math., Zbl0144.17701
- [19] Seymour Goldberg, Unbounded linear operators, MeGraw-Hill, New York, 1966. Zbl0925.47001
- [20] S.G. Mikmlin, Multidimensional singular integrals and integral equations, Fizmatgiz, Moscow, 1962; Trans., Pergman Press, London1965. Zbl0129.07701MR185399
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.