Verallgemeinerung des bertinischen Theorems in abelschen Mannigfaltigkeiten

Wolf Barth

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1969)

  • Volume: 23, Issue: 2, page 317-330
  • ISSN: 0391-173X

How to cite

top

Barth, Wolf. "Verallgemeinerung des bertinischen Theorems in abelschen Mannigfaltigkeiten." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 23.2 (1969): 317-330. <http://eudml.org/doc/83492>.

@article{Barth1969,
author = {Barth, Wolf},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {algebraic geometry},
language = {ger},
number = {2},
pages = {317-330},
publisher = {Scuola normale superiore},
title = {Verallgemeinerung des bertinischen Theorems in abelschen Mannigfaltigkeiten},
url = {http://eudml.org/doc/83492},
volume = {23},
year = {1969},
}

TY - JOUR
AU - Barth, Wolf
TI - Verallgemeinerung des bertinischen Theorems in abelschen Mannigfaltigkeiten
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1969
PB - Scuola normale superiore
VL - 23
IS - 2
SP - 317
EP - 330
LA - ger
KW - algebraic geometry
UR - http://eudml.org/doc/83492
ER -

References

top
  1. [1] Andreotti, A.: Théorèmes de dependance algébrique sur les espaces complexes pseudo-ooncaves. Ball. Soc. M. Fr.91, 1-38 (1963). Zbl0113.06403MR152674
  2. [2] Baldassari, M.: Algebraic Varieties, Ergebn. d. Math., Springer, Berlin-Göttingen- Heidelberg (1956). Zbl0075.15901MR82172
  3. [3] Barth, W.: Fortsetzung meromorpher Funktionen in Tori und komplex-projektiven Räumen. Inv. math., S. 42-62 (1968). Zbl0159.37602MR223598
  4. [4] Gunning, R.S. und Rossi, H.: Analytic functions of several complex variables, Prentice-Hall (1965). Zbl0141.08601MR180696
  5. [5] Hironaka, H. und H. Matsumara: Formal functions and formal embeddings, Vorabdruck 
  6. [6] Kajiwara, J.: On weak Poincaré problem, Mem. Fac. Sc. Kyushu Univ. Ser. A, Vol. 22, No 1, p. 9-17 (1968). Zbl0177.11401MR229858
  7. [7] Remmert, R., Holomorphe und meromorphe Abbildungen komplexer Räume. Math. Ann.133, 328-370 (1957). Zbl0079.10201MR92996
  8. [8] Rossr, H.: Continuation of subvarieties of projective varieties, Vorabdruck. 
  9. [9] Rothstein, W.: Einführung in die Funktionentheorie mehrerer komplexer Veränderlichen I, Vorlesungenachschrift, Münster1965. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.