Operazioni di Brouwer e realizzabilità formalizzata
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1971)
- Volume: 25, Issue: 4, page 649-682
- ISSN: 0391-173X
Access Full Article
topHow to cite
topCellucci, Carlo. "Operazioni di Brouwer e realizzabilità formalizzata." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.4 (1971): 649-682. <http://eudml.org/doc/83577>.
@article{Cellucci1971,
author = {Cellucci, Carlo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {ita},
number = {4},
pages = {649-682},
publisher = {Scuola normale superiore},
title = {Operazioni di Brouwer e realizzabilità formalizzata},
url = {http://eudml.org/doc/83577},
volume = {25},
year = {1971},
}
TY - JOUR
AU - Cellucci, Carlo
TI - Operazioni di Brouwer e realizzabilità formalizzata
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1971
PB - Scuola normale superiore
VL - 25
IS - 4
SP - 649
EP - 682
LA - ita
UR - http://eudml.org/doc/83577
ER -
References
top- [1] P. Bernays, Sur le platonisme dans les mathématiques, L'Enseignement Mathématique, vol. 34 (1935), pp. 52-69. Zbl0014.00101JFM61.0047.03
- [2] H.B. Curry, Foundations of mathematical logic, New York (Mc Graw-Hill) 1963, pp. xii + 408. Zbl0163.24209MR148529
- [3] N.D. Goodman, Intuitionistic arithmetic as a theory of constructions, tesi, Stanford University, 1968, pp. v + 111.
- [4] A. Heyting, Blick von der intuitionistischen Warte, Dialectica, vol.12 (1958), pp. 332-345. Zbl0089.24502MR99924
- [5] S.C. Kleene, On, the interpretation of intuitionistic number theory, The Journal of Symbolic Logic, vol. 10 (1945), pp. 109-124. Zbl0063.03260MR15346
- [6] S.C. Kleene, Introduction to metamathematics, Amsterdam (North-Holland) e Groningen (Noordhoff) 1952, pp. x + 550. Zbl0047.00703MR51790
- [7] S.C. Kleene, Realizability and Shanin's algorithm for the constructive deciphering of mathematical sentences, Logique et Analyse, vol. 3 (1960), pp. 154-165. MR103826
- [8] S.C. Kleene, Classical extensions of intuitionistic mathematics, in Logic, methodology and philosophy of science II, Proceedings of the 1964 international congress, a cura, di Y. BAR-HILLEL, Amsterdam (North-Holland) 1965, pp. 31-44. Zbl0192.03002MR209124
- [9] S.C. Kleene, Formalized recursive functionals and formalized realizability, Memoirs of the American Mathematical Society, N. 89, Providence, R. I. (American Mathematical Society) 1969, pp. 106. Zbl0184.02004MR244002
- [10] S.C. Kleene R.E. Vesley, The foundations of intuitionistic mathematics, especially in relation to recursive functions, Amsterdam (North-Holland) 1965, pp. viii+ 206. Zbl0133.24601MR176922
- [11] G. Kreisel, Mathematical logic, in Lectures on modern mathematics, a cura di T. L. SAATY, vol. III, New York (Wiley) 1965, pp. 95-195. Zbl0147.24703MR177866
- [12] G. Kreisel, Lawless sequences of natural numbers. Compositio Mathematica, vol. 20 (1968), pp. 222-248. Zbl0157.33401MR226992
- [13] G. Kreisel, Church's thesis : a kind of reducibility axiom for constructive mathematics, in Intuitionism and proof theory, Proceedings of the summer conference at Buffalo N. Y. 1968, a cura di A. Kino, J. Myhill e R.E. Vesiley, Amsterdam (North-Holland) 1970, pp. viii + 516. Zbl0199.30001MR270891
- [14] G. Kreisel A.S. Troelstra, Formal Systems for some branches of intuitionistic analysis, Annals of Mathematical Logic, vol. 1 (1970), pp. 229-387. Zbl0211.01101MR263609
- [15] D. Prawitz, Natural deduction. A proof-theoretical study, Stockholm (Almqvist & Wiksell) 1965, pp. 113. Zbl0173.00205MR193005
- [16] C. Spector, Provably recursive functionals of analysis: a consistency proof of analysis by an extension of principles formulated in current intuitioniatics mathematics, in Recursive function theory, Proceedings of symposia in pure mathematics, vol. 5, a cura di J.C.E. Derker, Providence, R. I. (American Mathematical Society) 1962, pp. 1-27. Zbl0143.25502MR154801
- [17] A.S. Troelstra, The theory of choice sequences, in Logic, methodology and philosophy of science III, Proceedings of the third international congress, a cura di B. VAN ROOTSELAAR e J. F. STAAL, Amsterdam (North-Holland) 1968, pp. 201-223. Zbl0185.01002MR252206
- [18] A.S. Troelstra, Notions of realizability for intuitionistic arithmetic in all finite types, in Proceedings of the Second Scandinavian Logic Symposium, a cura di J.E. Fenstad, in corso di pubblicazione. Zbl0227.02015
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.