Operazioni di Brouwer e realizzabilità formalizzata

Carlo Cellucci

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1971)

  • Volume: 25, Issue: 4, page 649-682
  • ISSN: 0391-173X

How to cite

top

Cellucci, Carlo. "Operazioni di Brouwer e realizzabilità formalizzata." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.4 (1971): 649-682. <http://eudml.org/doc/83577>.

@article{Cellucci1971,
author = {Cellucci, Carlo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {ita},
number = {4},
pages = {649-682},
publisher = {Scuola normale superiore},
title = {Operazioni di Brouwer e realizzabilità formalizzata},
url = {http://eudml.org/doc/83577},
volume = {25},
year = {1971},
}

TY - JOUR
AU - Cellucci, Carlo
TI - Operazioni di Brouwer e realizzabilità formalizzata
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1971
PB - Scuola normale superiore
VL - 25
IS - 4
SP - 649
EP - 682
LA - ita
UR - http://eudml.org/doc/83577
ER -

References

top
  1. [1] P. Bernays, Sur le platonisme dans les mathématiques, L'Enseignement Mathématique, vol. 34 (1935), pp. 52-69. Zbl0014.00101JFM61.0047.03
  2. [2] H.B. Curry, Foundations of mathematical logic, New York (Mc Graw-Hill) 1963, pp. xii + 408. Zbl0163.24209MR148529
  3. [3] N.D. Goodman, Intuitionistic arithmetic as a theory of constructions, tesi, Stanford University, 1968, pp. v + 111. 
  4. [4] A. Heyting, Blick von der intuitionistischen Warte, Dialectica, vol.12 (1958), pp. 332-345. Zbl0089.24502MR99924
  5. [5] S.C. Kleene, On, the interpretation of intuitionistic number theory, The Journal of Symbolic Logic, vol. 10 (1945), pp. 109-124. Zbl0063.03260MR15346
  6. [6] S.C. Kleene, Introduction to metamathematics, Amsterdam (North-Holland) e Groningen (Noordhoff) 1952, pp. x + 550. Zbl0047.00703MR51790
  7. [7] S.C. Kleene, Realizability and Shanin's algorithm for the constructive deciphering of mathematical sentences, Logique et Analyse, vol. 3 (1960), pp. 154-165. MR103826
  8. [8] S.C. Kleene, Classical extensions of intuitionistic mathematics, in Logic, methodology and philosophy of science II, Proceedings of the 1964 international congress, a cura, di Y. BAR-HILLEL, Amsterdam (North-Holland) 1965, pp. 31-44. Zbl0192.03002MR209124
  9. [9] S.C. Kleene, Formalized recursive functionals and formalized realizability, Memoirs of the American Mathematical Society, N. 89, Providence, R. I. (American Mathematical Society) 1969, pp. 106. Zbl0184.02004MR244002
  10. [10] S.C. Kleene R.E. Vesley, The foundations of intuitionistic mathematics, especially in relation to recursive functions, Amsterdam (North-Holland) 1965, pp. viii+ 206. Zbl0133.24601MR176922
  11. [11] G. Kreisel, Mathematical logic, in Lectures on modern mathematics, a cura di T. L. SAATY, vol. III, New York (Wiley) 1965, pp. 95-195. Zbl0147.24703MR177866
  12. [12] G. Kreisel, Lawless sequences of natural numbers. Compositio Mathematica, vol. 20 (1968), pp. 222-248. Zbl0157.33401MR226992
  13. [13] G. Kreisel, Church's thesis : a kind of reducibility axiom for constructive mathematics, in Intuitionism and proof theory, Proceedings of the summer conference at Buffalo N. Y. 1968, a cura di A. Kino, J. Myhill e R.E. Vesiley, Amsterdam (North-Holland) 1970, pp. viii + 516. Zbl0199.30001MR270891
  14. [14] G. Kreisel A.S. Troelstra, Formal Systems for some branches of intuitionistic analysis, Annals of Mathematical Logic, vol. 1 (1970), pp. 229-387. Zbl0211.01101MR263609
  15. [15] D. Prawitz, Natural deduction. A proof-theoretical study, Stockholm (Almqvist & Wiksell) 1965, pp. 113. Zbl0173.00205MR193005
  16. [16] C. Spector, Provably recursive functionals of analysis: a consistency proof of analysis by an extension of principles formulated in current intuitioniatics mathematics, in Recursive function theory, Proceedings of symposia in pure mathematics, vol. 5, a cura di J.C.E. Derker, Providence, R. I. (American Mathematical Society) 1962, pp. 1-27. Zbl0143.25502MR154801
  17. [17] A.S. Troelstra, The theory of choice sequences, in Logic, methodology and philosophy of science III, Proceedings of the third international congress, a cura di B. VAN ROOTSELAAR e J. F. STAAL, Amsterdam (North-Holland) 1968, pp. 201-223. Zbl0185.01002MR252206
  18. [18] A.S. Troelstra, Notions of realizability for intuitionistic arithmetic in all finite types, in Proceedings of the Second Scandinavian Logic Symposium, a cura di J.E. Fenstad, in corso di pubblicazione. Zbl0227.02015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.