Dissipative sets and nonlinear perturbated equations in Banach spaces

Viorel Barbu

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1972)

  • Volume: 26, Issue: 2, page 365-390
  • ISSN: 0391-173X

How to cite

top

Barbu, Viorel. "Dissipative sets and nonlinear perturbated equations in Banach spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.2 (1972): 365-390. <http://eudml.org/doc/83598>.

@article{Barbu1972,
author = {Barbu, Viorel},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {365-390},
publisher = {Scuola normale superiore},
title = {Dissipative sets and nonlinear perturbated equations in Banach spaces},
url = {http://eudml.org/doc/83598},
volume = {26},
year = {1972},
}

TY - JOUR
AU - Barbu, Viorel
TI - Dissipative sets and nonlinear perturbated equations in Banach spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1972
PB - Scuola normale superiore
VL - 26
IS - 2
SP - 365
EP - 390
LA - eng
UR - http://eudml.org/doc/83598
ER -

References

top
  1. [1] V. Barbu, Weak solutions for nonlinear functional equations in Banach spaces, Ann. Mat. Para ed Appl., vol. LXXXVII, 1970, pp. 87-110. Zbl0208.17002MR298484
  2. [2] F. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proceedings of the Symposium on Nonlinear Functional Analysis A. M. S., 1968. Zbl0327.47022
  3. [3] H. Brezis, Semi-groupes nonlinéaires et applications. Proceedings of the Symposium on Evolution Equations, Rome, 1970 (to appear). Zbl0231.47035
  4. [4] H. Brezis and A. Pazy, Semigroup of nonlinear contractions on convex sets. J. Functional Analysis (to appear). Zbl0209.45503MR448185
  5. [5]. H. Brezis, M.G. Crandall and A. Pazy, Perturbations of Nonlinear Maximal Monotone Sets in Banach Space. Comm. Pure Appl. Math., vol. XXIII, 1 (1970), pp. 123-144. Zbl0182.47501MR257805
  6. [6] M.G. Crandall and A. Pazy, Semigroups of nonlinear contractions and dissipative sets. J. Functional Analysis, 3 (1969), pp. 376-418. Zbl0182.18903MR243383
  7. [7] G. Da Prato, solutions for linear abstract differential equations in Banach Space. Advances in Math., vol. 5 (1970), pp. 181-245. Zbl0244.34048MR281053
  8. [8] G. Da Prato, Somme d'applications non-linéaires dans des cônes et équations d' évolution dans des espaces d' opérateurs. J. Math. Pures Appl., vol. 49 (1970), pp. 289-348. Zbl0236.47056MR513091
  9. [9] T. Kato, Nonlinear semigroups and evolution equations. J. Math. Soc. Japan, 19 (1967), pp. 508-520. Zbl0163.38303MR226230
  10. [10] T. KatoAocratiae operators and nonlinear evolulion equations in Banach spaces. Proceedings of the Symposium of Nonlinear Functional Analysis A. M. S.1968. Zbl0232.47069
  11. [11] Y. Kömurs, Nonlinear semigroups in Hilbert spaces. J. Math. Soc. Japan, 19 (1967), pp- 493-507. Zbl0163.38302
  12. [12] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non-linéaires. Dunod-Gauthier Villars, 1969. Zbl0189.40603MR259693

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.