Boundary values for Sobolev-spaces with weights. Density of D ( Ω ) in W p , γ 0 , , γ r s ( Ω ) and in H p , γ 0 , , γ r s ( Ω ) for s > 0 and r = s - 1 p -

Hans Triebel

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1973)

  • Volume: 27, Issue: 1, page 73-96
  • ISSN: 0391-173X

How to cite

top

Triebel, Hans. "Boundary values for Sobolev-spaces with weights. Density of $D (\Omega ) \text{ in } W^s_{p, \gamma _0, \dots , \gamma _r} (\Omega ) \text{ and in } H^s_{p, \gamma _0, \dots , \gamma _r} (\Omega )$ for $s$ &gt; $0$ and $r = \left[s - \frac{1}{p}\right]^-$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.1 (1973): 73-96. <http://eudml.org/doc/83632>.

@article{Triebel1973,
author = {Triebel, Hans},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {73-96},
publisher = {Scuola normale superiore},
title = {Boundary values for Sobolev-spaces with weights. Density of $D (\Omega ) \text\{ in \} W^s_\{p, \gamma _0, \dots , \gamma _r\} (\Omega ) \text\{ and in \} H^s_\{p, \gamma _0, \dots , \gamma _r\} (\Omega )$ for $s$ &gt; $0$ and $r = \left[s - \frac\{1\}\{p\}\right]^-$},
url = {http://eudml.org/doc/83632},
volume = {27},
year = {1973},
}

TY - JOUR
AU - Triebel, Hans
TI - Boundary values for Sobolev-spaces with weights. Density of $D (\Omega ) \text{ in } W^s_{p, \gamma _0, \dots , \gamma _r} (\Omega ) \text{ and in } H^s_{p, \gamma _0, \dots , \gamma _r} (\Omega )$ for $s$ &gt; $0$ and $r = \left[s - \frac{1}{p}\right]^-$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1973
PB - Scuola normale superiore
VL - 27
IS - 1
SP - 73
EP - 96
LA - eng
UR - http://eudml.org/doc/83632
ER -

References

top
  1. [1] O.V. Besov, J. Kadlec, A. Kufner, ,Sonia properties for classes with weights. Dokl. akad. nauk SSSR171 (1966), 514-516, [Russian]. Zbl0168.11103MR204842
  2. [2] P.L. Butzer, H. Berens, Senti-group8 of operators and approxirrzation, Springer, Ber lin1967. 
  3. [3] P. Grisvard, Commutativé de deux foncteurs d'enterpolation et applications, Journ. Math. pures et appl.45 (1966), 143-290. Zbl0173.15803MR221309
  4. [4] G.G. Hardy, D.E. Littlewood, G. Polya, Inequalities. Cambridge1952. Zbl0047.05302MR46395
  5. [5] V.P. Il'in, Properties of some classes of differentiable functions of several variables in n-dimensvonal domains, Trudy mat inst. Steklova66 (1962), 227-363. [Russian]. MR153789
  6. [6] J.L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications. vol. I. Dnnod, Paris1968. Zbl0165.10801
  7. [7] J.L. Lions, E. Magenes, Problèmes aux limites non homogèneSIV. Ann. scuol. norm. sup. Pisa15 (1961), 311-326. Zbl0115.31302MR140938
  8. [8] J.L. Lions, E. Magenes, Problemi ai limiti non omogenei V. Ann. scuol. norm. sup-Pisa16 (1962), 1-44. Zbl0115.31401MR146527
  9. [9] J.L. Lions, J. Peetre, Sur une classe d' éspaces d'interpotation. Inst. Hautes Études Sci, Publ. Math.19 (1964), 5-68. Zbl0148.11403MR165343
  10. [10] E. Magenes, Interpolation spaces and partial differential equations. Usp. mat. nauk21 (1966), 169-218. [Russian]. Zbl0173.15802MR203221
  11. [11] T. Muramatu, On Besov spaces of functions defined in general regions. Publ. Res. Inst-Mathem. Sci., Kyoto Univ.6 (1970/71), 515-543, Zbl0225.46036MR322499
  12. [12] S.M. Nikol'skij, Approximation of functions of several variables and embedding theorarns. Nauka, Moskva1969. [Russian]. 
  13. [13] J. Peetre, Sur le nombre de paramètres dans la définition de oertain espaces d'anterpolationRicerche Mat.12 (1963), 248-261. Zbl0125.06501MR169043
  14. [14] E. Shanir, Une propriété des espaces Hs,p. Compt. Rend. Acad. Sci.(Paris) 255 (1962), 448-449. Zbl0108.11001
  15. [15] S.L. Sobolev, Some applioations of functional analysis in mathematical physics. Leningrad, 1950. [Russian]. 
  16. [16] H. Triebel, Allgemeine Legandresche Differentialoperateren I. Jonrn. Functional Anal.6 (1970), 1-25. Zbl0195.42701MR275230
  17. [17] H. Triebel, Spaces of distributions of Besov type on Euclidean n-space. Dnality, interpolation Arkiv f. Matem. (to appear). Zbl0255.46026MR348483
  18. [18] H. Triebkl, Uber die Existeitz von Schauderbasen in Sobolev - Besov - Räumen. Isomorphiebeziehungen. Studia Math. (in Druck). Zbl0251.46032
  19. [19] H. Triebel, Interpolation theory for function spaces of Besov type defined in domain8 I. Math. Nachrichten (to appear). Zbl0223.46038MR348485
  20. [20] Embedding theorenis and their applications. Papers of the symposium for embedding theorems in Baku 1966. Nauka, Moskva1970. [Russian]. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.