Boundary values for Sobolev-spaces with weights. Density of for > and
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1973)
- Volume: 27, Issue: 1, page 73-96
- ISSN: 0391-173X
Access Full Article
topHow to cite
topTriebel, Hans. "Boundary values for Sobolev-spaces with weights. Density of $D (\Omega ) \text{ in } W^s_{p, \gamma _0, \dots , \gamma _r} (\Omega ) \text{ and in } H^s_{p, \gamma _0, \dots , \gamma _r} (\Omega )$ for $s$ > $0$ and $r = \left[s - \frac{1}{p}\right]^-$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.1 (1973): 73-96. <http://eudml.org/doc/83632>.
@article{Triebel1973,
author = {Triebel, Hans},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {73-96},
publisher = {Scuola normale superiore},
title = {Boundary values for Sobolev-spaces with weights. Density of $D (\Omega ) \text\{ in \} W^s_\{p, \gamma _0, \dots , \gamma _r\} (\Omega ) \text\{ and in \} H^s_\{p, \gamma _0, \dots , \gamma _r\} (\Omega )$ for $s$ > $0$ and $r = \left[s - \frac\{1\}\{p\}\right]^-$},
url = {http://eudml.org/doc/83632},
volume = {27},
year = {1973},
}
TY - JOUR
AU - Triebel, Hans
TI - Boundary values for Sobolev-spaces with weights. Density of $D (\Omega ) \text{ in } W^s_{p, \gamma _0, \dots , \gamma _r} (\Omega ) \text{ and in } H^s_{p, \gamma _0, \dots , \gamma _r} (\Omega )$ for $s$ > $0$ and $r = \left[s - \frac{1}{p}\right]^-$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1973
PB - Scuola normale superiore
VL - 27
IS - 1
SP - 73
EP - 96
LA - eng
UR - http://eudml.org/doc/83632
ER -
References
top- [1] O.V. Besov, J. Kadlec, A. Kufner, ,Sonia properties for classes with weights. Dokl. akad. nauk SSSR171 (1966), 514-516, [Russian]. Zbl0168.11103MR204842
- [2] P.L. Butzer, H. Berens, Senti-group8 of operators and approxirrzation, Springer, Ber lin1967.
- [3] P. Grisvard, Commutativé de deux foncteurs d'enterpolation et applications, Journ. Math. pures et appl.45 (1966), 143-290. Zbl0173.15803MR221309
- [4] G.G. Hardy, D.E. Littlewood, G. Polya, Inequalities. Cambridge1952. Zbl0047.05302MR46395
- [5] V.P. Il'in, Properties of some classes of differentiable functions of several variables in n-dimensvonal domains, Trudy mat inst. Steklova66 (1962), 227-363. [Russian]. MR153789
- [6] J.L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications. vol. I. Dnnod, Paris1968. Zbl0165.10801
- [7] J.L. Lions, E. Magenes, Problèmes aux limites non homogèneSIV. Ann. scuol. norm. sup. Pisa15 (1961), 311-326. Zbl0115.31302MR140938
- [8] J.L. Lions, E. Magenes, Problemi ai limiti non omogenei V. Ann. scuol. norm. sup-Pisa16 (1962), 1-44. Zbl0115.31401MR146527
- [9] J.L. Lions, J. Peetre, Sur une classe d' éspaces d'interpotation. Inst. Hautes Études Sci, Publ. Math.19 (1964), 5-68. Zbl0148.11403MR165343
- [10] E. Magenes, Interpolation spaces and partial differential equations. Usp. mat. nauk21 (1966), 169-218. [Russian]. Zbl0173.15802MR203221
- [11] T. Muramatu, On Besov spaces of functions defined in general regions. Publ. Res. Inst-Mathem. Sci., Kyoto Univ.6 (1970/71), 515-543, Zbl0225.46036MR322499
- [12] S.M. Nikol'skij, Approximation of functions of several variables and embedding theorarns. Nauka, Moskva1969. [Russian].
- [13] J. Peetre, Sur le nombre de paramètres dans la définition de oertain espaces d'anterpolationRicerche Mat.12 (1963), 248-261. Zbl0125.06501MR169043
- [14] E. Shanir, Une propriété des espaces Hs,p. Compt. Rend. Acad. Sci.(Paris) 255 (1962), 448-449. Zbl0108.11001
- [15] S.L. Sobolev, Some applioations of functional analysis in mathematical physics. Leningrad, 1950. [Russian].
- [16] H. Triebel, Allgemeine Legandresche Differentialoperateren I. Jonrn. Functional Anal.6 (1970), 1-25. Zbl0195.42701MR275230
- [17] H. Triebel, Spaces of distributions of Besov type on Euclidean n-space. Dnality, interpolation Arkiv f. Matem. (to appear). Zbl0255.46026MR348483
- [18] H. Triebkl, Uber die Existeitz von Schauderbasen in Sobolev - Besov - Räumen. Isomorphiebeziehungen. Studia Math. (in Druck). Zbl0251.46032
- [19] H. Triebel, Interpolation theory for function spaces of Besov type defined in domain8 I. Math. Nachrichten (to appear). Zbl0223.46038MR348485
- [20] Embedding theorenis and their applications. Papers of the symposium for embedding theorems in Baku 1966. Nauka, Moskva1970. [Russian].
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.