Abschätzung nach unten für Lösungen nichtlinearer Differentialungleichungen

Ray Redheffer

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1973)

  • Volume: 27, Issue: 3, page 441-456
  • ISSN: 0391-173X

How to cite

top

Redheffer, Ray. "Abschätzung nach unten für Lösungen nichtlinearer Differentialungleichungen." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.3 (1973): 441-456. <http://eudml.org/doc/83643>.

@article{Redheffer1973,
author = {Redheffer, Ray},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {ger},
number = {3},
pages = {441-456},
publisher = {Scuola normale superiore},
title = {Abschätzung nach unten für Lösungen nichtlinearer Differentialungleichungen},
url = {http://eudml.org/doc/83643},
volume = {27},
year = {1973},
}

TY - JOUR
AU - Redheffer, Ray
TI - Abschätzung nach unten für Lösungen nichtlinearer Differentialungleichungen
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1973
PB - Scuola normale superiore
VL - 27
IS - 3
SP - 441
EP - 456
LA - ger
UR - http://eudml.org/doc/83643
ER -

References

top
  1. [1] Bony, J.M.Principe du maximum, inegalité de Harnack et unicité du probleme de Cauchy pour les opérateur elliptiques dégénérés. Ann. Inst. Fourier, Grenoble19, 1 (1969), 277-304. Zbl0176.09703MR262881
  2. [2] Dell, R., Redheffer, R.Sharp Lower Bounds for Solutions of Nonlinear Differential Inequalities. Math. Z.127, 199-216 (1972). Zbl0223.35041MR315274
  3. [3] Habetha, K.Uber eine Integraldarstellung und das Phragmén-Lindelöfsche Prinzip bei elliptischen Differentialgleichungen. Math. Annalen165, 91-110 (1966). Zbl0137.07101MR203056
  4. [4] Ladyzhenskaya, O.A., Ural'tseva, N.N.Local estimates for gradients of solutions of nonuniformly elliptic and parabolic equations. Comm. Pure Appl. Math., XXII, 677-703 (1970). Zbl0193.07202MR265745
  5. [5] Moser, J.On Harnack's theorem for elliptic differential equations. Comm. Pure Appl. Math.14, 577-591 (1961). Zbl0111.09302MR159138
  6. [6] Protter, M. Weinberger, H., Maximum principles in differential equations. Prentice, Hall, Englewood Cliffs, New Jersey (1967). Zbl0153.13602MR219861
  7. [7] Serrin, J.On the Harnack inequality for linear elliptic equations. Jour. d'Anal. Math.4292-308 (1956). Zbl0070.32302MR81415
  8. [8] Serrin, J.A Harnack inequality for nonlinear equations. Bull. Amer. Math. Soc., 69, 481-486 (1963). Zbl0137.06902MR150443
  9. [9] Serrin, J.The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Phil. Trans. Roy. Soc. London264, 413-496 (1969). Zbl0181.38003MR282058
  10. [10] Trudinger, Neil, S.On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. on Pure and Applied Math. XX, 721-747 (1967). Zbl0153.42703MR226198

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.