Exceptional sets with respect to Lebesgue differentiation of functions in Sobolev spaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1974)
- Volume: 1, Issue: 1-2, page 113-130
- ISSN: 0391-173X
Access Full Article
topHow to cite
topMarcus, Moshe. "Exceptional sets with respect to Lebesgue differentiation of functions in Sobolev spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.1-2 (1974): 113-130. <http://eudml.org/doc/83668>.
@article{Marcus1974,
author = {Marcus, Moshe},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1-2},
pages = {113-130},
publisher = {Scuola normale superiore},
title = {Exceptional sets with respect to Lebesgue differentiation of functions in Sobolev spaces},
url = {http://eudml.org/doc/83668},
volume = {1},
year = {1974},
}
TY - JOUR
AU - Marcus, Moshe
TI - Exceptional sets with respect to Lebesgue differentiation of functions in Sobolev spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1974
PB - Scuola normale superiore
VL - 1
IS - 1-2
SP - 113
EP - 130
LA - eng
UR - http://eudml.org/doc/83668
ER -
References
top- [1] C.P. Calderòn - E.B. Fabes - N.M. Riviere, Maximal smoothing operatorsInd. Univ. Math. J., 23 (1974), pp. 889-898. Zbl0313.46028MR341058
- [2] N. Dunford - J.T. Schwartz, Linear operators, I, Interscience, New York. Zbl0084.10402
- [3] H. Federer, Some properties of distributions whose partial derivatives are representable by integration, Bull. Am. Math. Soc., 74 (1968), pp. 183-186. Zbl0163.36503MR218893
- [4] H. Federer, Geometric measure theory, Springer-Verlag, Heidelberg and New York, 1969. Zbl0176.00801MR257325
- [5] H. Federer - W.P. Ziemer, The Lebesgμe set of a function whose distribution derivatives are p-th power summable, Ind. Univ. Math. J., 22 (1972), pp. 139-158. Zbl0238.28015
- [6] E. Gagliardo, Proprietà di alcune classi di funzioni in più variabili, Richerche di Math., 7 (1958), pp. 102-137. Zbl0089.09401MR102740
- [7] C.B. Morrey, Functions of several variables and absolute continuity II, Duke Math. J., 6 (1940), pp. 187-215. Zbl0026.39401MR1279JFM66.1225.01
- [8] C.B. Morrey, Multiple integrals in the calculus of variations, Springer-Verlag, Heidelberg and New York, 1966. Zbl0142.38701MR202511
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.