Existence of optimal controls for control systems governed by nonlinear partial differential equations

Marshall Slemrod

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1974)

  • Volume: 1, Issue: 3-4, page 229-246
  • ISSN: 0391-173X

How to cite

top

Slemrod, Marshall. "Existence of optimal controls for control systems governed by nonlinear partial differential equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.3-4 (1974): 229-246. <http://eudml.org/doc/83677>.

@article{Slemrod1974,
author = {Slemrod, Marshall},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3-4},
pages = {229-246},
publisher = {Scuola normale superiore},
title = {Existence of optimal controls for control systems governed by nonlinear partial differential equations},
url = {http://eudml.org/doc/83677},
volume = {1},
year = {1974},
}

TY - JOUR
AU - Slemrod, Marshall
TI - Existence of optimal controls for control systems governed by nonlinear partial differential equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1974
PB - Scuola normale superiore
VL - 1
IS - 3-4
SP - 229
EP - 246
LA - eng
UR - http://eudml.org/doc/83677
ER -

References

top
  1. [1] M.G. Crandall - A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J. Math., 11 (1972), pp. 57-94. Zbl0249.34049MR300166
  2. [2] J.L. Lions, Optimal control of systems governed by partial differential equations, Springer-Verlag, New York, 1971. Zbl0203.09001MR271512
  3. [3] J.L. Lions, On some optimization problems for linear parabolic equations, in « Functional analysis and optimization », ed. E. R. Caianiello, Academic Press, New York, 1966, pp. 115-131. Zbl0182.43101MR231026
  4. [4] J.L. Lions, Optimization pour certaines classes d'équations d'évolution non linéaires, Annali di Mat., 72 (1966), pp. 275-294. Zbl0151.15003MR211106
  5. [5] M.G. Crandall - T.M. Liggett, Generation of semigroups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), pp. 265-298. Zbl0226.47038MR287357
  6. [6] H. Brezis - A. Pazy, Convergence and approximation of nonlinear operators in Banach spaces, J. Functional Analysis, 9 (1972), pp. 63-74. Zbl0231.47036MR293452
  7. [7] G.F. Webb, Continuous nonlinear perturbations of nonlinear accretive operators in Banach spaces, J. Functional Analysis, 10 (1972), pp. 191-203. Zbl0245.47052MR361965
  8. [8] M.J. Lighthill - G.B. Whitham, On kinematic waves - II : A theory of traffic flow on long crowded roads, Proc. Roy. Soc. (London), 229A (1955), pp. 317-345. Zbl0064.20906MR72606
  9. [9] C.M. Dafermos, private communication. 
  10. [10] M.G. Crandall, The semigroup approach to first order quasilinear equations in several space variables, Israel J. Math., 12 (1972), pp. 108-132. Zbl0246.35018MR316925
  11. [11] P. Benilan, Equations d'evolution dans un espace de Banach quelconque et applications, Thesis, Univ. of Paris (Orsay), 1972. Zbl0246.47068
  12. [12] E.B. Lee - L. Markus, Foundations of optimal control theory, J. Wiley, New York, 1967. Zbl0159.13201MR220537
  13. [13] A.J. Plant, A Riemann integrability condition for nonlinear evolution equations submitted to Amer. J. Math. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.